PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultrasonic IR thermographic inspection of graphite epoxy composite: a comparative study of piezoelectric and magnetostrictive stimulation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Advanced Infrared Technology and Applications - AITA 2013 (12 ; 10-13.09.2013 ; Turin, Italy)
Języki publikacji
EN
Abstrakty
EN
In this paper the experimental results of piezoelectric and magnetostrictive ultrasonic stimulation are comparatively analyzed in the evaluation of impact damage in a graphite epoxy composite sample chosen for a round robin test. By comparing theoretical and experimental results, it is shown that the equivalent power of internal friction can reach some hundreds mill watt per a single crack.
Twórcy
autor
  • Military Institute of Armament Technology, 7 Wyszynskiego Str., 05-220 Zielonka, Poland
autor
  • Tomsk Polytechnic University, 7 Savinykh Str., Tomsk, 634028 Russia
Bibliografia
  • 1. K.L. Reifsnider, E.G. Henneke, and W.W. Stinchcomb, “The mechanics of vibrothermography”, in: Mechanics of nondestructive testing, ed. By W.W Stinchcomb, Plenum Press, pp. 249-276, New York 1980.
  • 2. A. Dillenz, Th. Zweschper, and G. Busse, “Elastic wave burst thermography for NDE of subsurface features”, Insight 42, 815-817 (2000).
  • 3. Th. Zweschper, A. Dillenz, and G. Busse, “Ultrasound lock-in thermography - a defect selective method for the inspection of aerospace components”, Insight 43, 173-179 (2001).
  • 4. Th. Zweschper, A. Dillenz, and G. Busse, “Ultrasound lockin thermography - an NDT Method for the inspection of aerospace structures”, Proc. 64th Eurotherm Seminar “Quant. IK Thermography”, pp. 212-217, Reims, 2000.
  • 5. A. Dillenz, Th. Zweschper, and G. Busse, “Phase angle thermography with ultrasound burst excitation”, Proc. 64th Eurotherm Seminar "Quant. IR Thermography”, pp. 247-252, Reims, 2000.
  • 6. L.D. Favro, X. Han, Z. Ouyang et al, “IR imaging of cracks excited by an ultrasonic pulse”, Proc. SPIE 4020, 182-185 (2000).
  • 7. M.W. Burke and W.O. Miller, “Status of vibrolR at lawrence livermore national laboratory”, Proc. SPIE 5405, 313-321 (2004).
  • 8. M. Morbidini, P. Cawley, T. Barden, D. Almond, and P. Duffour, “Prediction of the thermosonic signal from fatigue cracks in metals using vibration damping measurements”, J. Appl. Phys. 100, 104905 (2006).
  • 9. J. Renshaw, S.D. Holland, and R.B. Thompson “Measurement of crack opening stresses and crack closure stress profiles from heat generation in vibrating cracks”, Appl. Phys. Lett. 93, 081914(2008).
  • 10. C. Homma, M. Rothenfusser, J. Baumann, and R. Shannon, “Study of the heat generation mechanism in acoustic thermography”, in: Review o f progress in quantitative nondestructive evaluation 25, ed. by Thompson DO, Chimenti DE, American Institute of Physics, pp. 566-573, Melville, NY, 2006.
  • 11. X. Guo and V.P. Vavilov, “Crack detection in aluminum parts by using ultrasound-excited infrared thermography”, Infrared Phys. Techn. 61, 149-156 (2013).
  • 12. J.M. Milne and W.N. Reynolds, “The non-destructive evaluation of composites and other materials by thermal pulse video thermography”, Proc. SPIE 520, 119-122 (1984).
  • 13. N.P. Avdelidis, B.C. Hawtin, and D.P. Almond, “Transient thermography in the assessment of defects of aircraft composites”, NDT & E International 36, 433-439 (2003).
  • 14. S. Shepard, “Understanding flash thermography”, Mater. Eval. 454, (2006).
  • 15. V.P. Vavilov, V.S. Khorev, and A.O. Chulkov, “Ultrasonic infrared testing of impact damage in composites: Analysis of peculiarities. Testing”, Diagnostics 13, 197-201 (2012) (in Russian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01d43793-791c-4a60-a4db-ba0b6e804e72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.