PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Social influence and impact of social media on users’ mobility decisions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Social media are deemed influential in making decisions and seeking advice. Due to their explosive growth as critical channels for information, their content can trigger a place visit, a change of transport mode or destination, or plans’ cancellation. The main objective of this paper is to investigate the influence of social media on users’ activity and mobility planning. Responses of 738 participants in a digital survey were used to formulate ordinal regression models. The developed models determine the contribution of users’ demographic characteristics, travel characteristics and social media usage to mobility decisions after using social media as a source of information. These decisions were expressed in two dependent variables; (i) the impact of social media use in activity and mobility planning; (ii) the impact of the proposed transport mode by social media information, on mode choice. Analysis of the results indicated that the models, which considered all the characteristics together, could better predict the two variables.
Twórcy
  • Department of Civil Engineering, University of Thessaly, Volos, 38334 Greece
  • Department of Civil Engineering, University of Thessaly, Volos, 38334 Greece
Bibliografia
  • Abbasi, A., Rashidi, T. H., Maghrebi, M., & Waller, S. T. (2015). Utilising Location Based Social Media in Travel Survey Methods: bringing Twitter data into the play. In 'LBSN@SIGSPATIAL/GIS' (A. Pozdnoukhov, D. Sacharidis and S. Xu, eds.), ACM. ISBN: 978-1-4503-3975-9, 1:1-1:9.
  • Axsen, J., & Kurani, K. S. (2012). Social influence, consumer behavior, and low-carbon energy transitions. Annual Review of Environment and Resources, 37, 311-340.
  • Axsen, J., & Kurani, K. S. (2014). Social influence and proenvironmental behavior: the reflexive layers of influence framework. Environment and Planning B: Planning and Design, 41(5), 847-862.
  • Ayeh, J. K., Au, N., & Law, R. (2013). Predicting the intention to use consumer-generated media for travel planning. Tourism Management, 35, 132-143.
  • Belgiawan, P. F. Schmöcker, J. D. Abou-Zeid, M. Walker, J. Lee, T. C., Ettema, D. F., & Fujii, S. (2014). Car ownership motivations among undergraduate students in China, Indonesia, Japan, Lebanon, Netherlands, Taiwan, and USA. Transportation, 41(6), 1227-1244.
  • Bingham, C. R., Simons Morton, B. G., Pradhan, A. K., Li, K., Almani, F., Falk, E. B., Shope, J. T., Buckley, L., Ouimet, M. C., & P. T. Albert, P. T. (2016). Peer passenger norms and pressure: experimental effects on simulated driving among teenage males. Transportation Research F: Traffic Psychology and Behaviour, 41, 124-137.
  • Booth, L., Norman, R., & Pettigrew, S. (2019). The potential implications of autonomous vehicles for active transport. Journal of Transport & Health, 15, doi: 10.1016/j.jth.2019.100623
  • Bregman, S. (2012). Uses of social media in public transportation. Transit Cooperative Research Program (TCRP) Synthesis Transportation Research Board, Washington, D. C.
  • Byon, Y.-J., Abdulhai, B., & Shalaby, A. (2009). Real-time transportation mode detection via tracking global positioning system mobile devices. Intelligent Transportation Systems, 13(4), 161-170.
  • Chung, N., & Koo, C. (2015). The use of social media in travel information search. Telematics and Informatics, 32(2), 215-229.
  • Cohen-Blankshtain, G., & Rotem-Mindali, O. (2016). Key research themes on ICT and sustainable urban mobility. International Journal of Sustainable Transportation, 10(1), 9-17.
  • Cottrill, C. (2017). Tweeting Transit: An examination of social media strategies for transport information management during a large event. Transportation Research Part C: Emerging Technologies, 77, 421-432.
  • Cox, D. R., & Snell, E. J. (1989). Analysis of Binary Data. 2nd Edition, Chapman and Hall/CRC, London.
  • D'Ambra, L., Crisci, A., Meccariello, G., Ragione, L. D., & Palma, R. (2020). Evaluation of the social and economic impact of carbon dioxide (CO2) emissions on sustainable mobility using cumulative ordinal models: trend odds model. In: Socio-Economic Planning Sciences, doi: 10.1016/j.seps.2020.100817
  • Delbosc, A. & Currie, G. (2014). Changing demographics and young adult driver license decline in Melbourne, Australia. Transportation, 41(3), 529-5
  • Esztergár-Kiss, D., & Tettamanti, T. (2019). Stakeholder engagement in mobility planning. In: Autonomous vehicles and future mobility. Elsevier, ISBN: 9780128176962, 113-123.
  • Fu, K., Nune, R., & Tao, J. X. (2015). Social media data analysis for traffic incident detection and management. In: Transportation Research Board 94th Annual Meeting, Washington D.C., 14-4022.
  • Fu, K., Nune, R., & Tao, J. X. (2015). Social media data analysis for traffic incident detection and management. In: Transportation Research Board 94th Annual Meeting, Washington D.C., 14-4022.
  • Gao, H., Tang, J., & Liu, H. (2012). Exploring social-historical ties on location-based social networks. In Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media.
  • Germann Molz, J. (2012). Travel connections: Tourism, technology and togetherness in a mobile world. London, Routledge. ISBN: 9780203123096.
  • Goetzke, F., & Weinberger, R. (2012). Separating contextual from endogenous effects in automobile ownership models. Environment and Planning A: Economy and Space, 44(5), 1032-1046.
  • Gossling S., & Stavrinidi, I. (2015). Social Networking, Mobilities, and the Rise of Liquid Identities. Mobilities, 11(5), 723-743.
  • Gossling, S. (2017). ICT and transport behaviour: A conceptual review. International Journal of Sustainable Transportation, 12(3), 153-1
  • Gunnarsson, S. O. (2000). Studies in travel behaviour and mobility management need a special scientific discipline: “Mobilistics”. IATSS Research, 24, 69-75.
  • Gutiérrez, P. A., Pérez-Ortiz, M., Sánchez-Monedero, J., Fernández-Navarro, F., & Hervás Martínez, C. (2016). Ordinal regression methods: Survey and experimental study. In: IEEE Transactions on Knowledge and Data Engineering, 28, 127-146.
  • Hasan, S., Zhan, X., & Ukkusuri, S. V. (2013). Understanding urban human activity and mobility patterns using large-scale location-based data from online social media. In: Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, ACM.
  • Hasan, S., & Ukkusuri, S. V. (2015). Location contexts of user check-ins to model urban geo life-style patterns. PLoS ONE, 10(5), p. e0124819.
  • Hosmer Jr., D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression. (3rd Edition). Wiley Series in Probability and Statistics. John Wiley & Sons, 2013.
  • Keith, D., Sterman, J., & Struben., J. (2012). Understanding spatiotemporal patterns of hybrid-electric vehicle adoption in the United States. 91st Annual Meeting of the Transportation Research Board.
  • Lee J. H., Davis, A. W., McBride, E., & Goulias, K. G. Exploring Social Media Data for Travel Demand Analysis: A comparison of Twitter, household travel survey and synthetic population data in California. Paper presented at the 96th Annual Meeting of the Transportation Research Board, Washington, D.C., 20
  • Lee, J. H., A. Davis, S. Y. Yoon, K. G. Goulias: Activity Space Estimation with Longitudinal Observations of Social Media Data. In: Transportation Research Board 95th Annual Meeting, 16-0070, 2016.
  • Line, T., Jain, J. & Lyons, G. (2011). The role of ICTs in everyday mobile lives. Journal of Transport Geography, 19(6), 1490-1499.
  • Manca, M., Boratto, L., Roman, V. M., Martori i Gallissà, O., & Kaltenbrunner, A. (2017). Using social media to characterize urban mobility patterns: State-of-the-art survey and case-study, Online Social Networks and Media, 1, 56-69.
  • McFadden, D. (1973). Conditional Logit Analysis of Qualitative Choice Behaviour. In Frontiers in Econometrics (P. Zarembka, ed.), Academic Press New York, 105-142.
  • Milioti, C., Katopodis, V., Kepaptsoglou, K., & Tyrinopoulos, Y. (2019). Assessing the influence of social media in tourist mobility of young travelers. Presented at 98th Annual Meeting of the Transportation Research Board, Washington, D.C.
  • Mohammadreza, M. (2012). A study on effects of demographic variables on success of social media. Management Science Letters, 2, 2557-2564.
  • Nagelkerke, N. J. D. (1991). A Note on a General Definition of the Coefficient of Determination. Biometrika, 78, 691-692.
  • Osborne, J. W. (2015). Best Practices in Logistic Regression. Best practices in logistic regression. 55 City Road, London: SAGE Publications.
  • Schroeder, A., & Penninghton-Gray, L. (2014). The Role of Social Media in International Tourist’s Decision Making. Journal of Travel Research, 54, 584-595.
  • Simms, A. (2012). Online user-generated content for travel planning-different for different kinds of trips?. e-Review of Tourism Research, 10(3), 76-85.
  • Spais, S. G., & Vasileiou, K. Z. (2006). An ordinal regression analysis for the explanation of consumer overall satisfaction in the food-marketing context: The managerial implications to consumer strategy management at a store level. Database Marketing & Customer Strategy Management, 14, 51-73.
  • Staus, A. (2008). An ordinal regression model using dealer satisfaction data. Journal of Economics, 112, 168-172.
  • Stewart, G., Kamata, A., Miles, R., Grandoit, E., Mandelbaum, F., Quinn, & C., Rabin, L. (2019). Predicting mental health help seeking orientations among diverse Undergraduates: An ordinal logistic regression analysis. Journal of Affective Disorders, 2271-280.
  • Tasse, D., & Hong, J. I. (2018). Using social media data to understand cities. Carnegie Mellon University. Journal contribution, doi: 10.1184/R1/6470645.v1
  • Tian, Y., Zmud, M., Chiu, Y. C., Carey, D., Dale, J., Smarda, D., Lehr, R., & James, R. (2016). Quality assessment of social media traffic reports - a field study in Austin, Texas. In: Transportation Research Board 95th Annual Meeting, Washington D.C., 16-6852.
  • van den Berg, P., Sharmeen, F., & Weijs-Perrée, M. (2017). On the subjective quality of social Interactions: Influence of neighborhood walkability, social cohesion and mobility choices. Transportation Research Part A: Policy and Practice, 106, 309-319.
  • van Wee, B. (2015). Peak car: the first signs of a shift towards ICT-based activities replacing travel? A discussion paper. Transport Policy, 42, 1-3.
  • Xiang, Z., & Gretzel, U. (2010) Role of social media in online travel information search. Tourism Management, 31: 179-188.
  • Yamagishi, Y., Saito, K., & T. Ikeda, T. (2016). Modeling of Travel Behavior Processes from Social Media. PRICAI 2016: Trends in Artificial Intelligence. Lecture Notes in Computer Science, 9810, 626-637.
  • Yoo, H.-H., & Gretzel, U. (2011). Influence of personality on travel-related consumer-generated media creation. Computers in Human Behavior, 27,609-621.
  • Yoo, K.-H., & Gretzel, U. (2012). Use and Creation of Social Media by Travellers. In: Social Media in Travel, Tourism and Hospitality: Theory, Practice and Cases (M. Sigala, E. Christou, and U. Gretzel, eds.), Ashgate Pulsihing Limited, Surrey, UK, 189-206.
  • Zhang, Z., Tang, Z., T. Q., & Huang, H.-J. (2019). Modeling the social-influence-based route choice behavior in a two-route network. Physica A: Statistical Mechanics and its Applications, 531, 121744.
Uwagi
1. This research is co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01d3213b-08e8-46ec-b26d-04fa9a23fbe2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.