PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Some characterizations of Schur matrices in ultrametric fields

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this short paper, K denotes a complete, non-trivially valued, ultra-metric field. Sequences and infinite matrices have entries in K. We prove a few characterizations of Schur matrices in K. We then deduce some non-inclusion theorems modelled on the results of Agnew [1] and Fridy [3] in the classical case.
Rocznik
Strony
137--142
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
  • Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram, Chennai 600 028,India
Bibliografia
  • [1] R.P. Agnew, A simple sufficient condition that a method of summability be stronger than convergence, Bull. Amer. Math. Soc. 52 (1946), 128 132.
  • [2] G. Bachman, Introduction to p-adic numbers and valuation theory, Academic Press (1964).
  • [3] J.A. Fridy, Non-inclusion theorems for summability matrices, Int. J. Math. & Math. Sci. 20 (1997), 511-516.
  • [4] A.F. Monna,Sur le theoreme de Banach-Steinhaus, Indag. Math. 25 (1963), 121-131.
  • [5] P.N. Natarajan, The Steinhaus theorem for Toeplitz matrices in non-archimedean fields, Comment. Math. Prace Mat. 20 (1978), 417 422.
  • [6] P.N. Natarajan and V. Srinivasan, Silverman-Toeplitz theorem for double sequences and series and its application to Norlund means in non-archimedean fields, Ann. Math. Blaise Pascal 9 (2002), 85-100.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01c93f9a-006f-4823-88fb-7a4a8b412a4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.