PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New biomimetic approach to the aircraft wing structural design based on aeroelastic analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a new biomimetic approach to the structural design. For the purpose of aircraft wing design the numerical environment combining simultaneous structural size, shape, and topology optimization based on aeroelastic analysis was developed. For the design of aircraft elements the optimization process must be treated as a multi-load case task, because during the fluid structure interaction analysis each step represents a different structural load case. Also, considering different angles of attack, during the CFD computation each result is considered. The method-specific features (such as domain independence, functional configurations during the process of optimization, and multiple load case solution implemented in the optimization scenario) enable the optimal structural form. To illustrate the algorithm functionality, the problem of determining the optimal internal wing structure was presented. The optimal internal wing structure resulting from aeroelastic computation with different angles of attack has been presented.
Rocznik
Strony
741--750
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Chair of Virtual Engineering, Poznan University of Technology, 24 Jana Pawla II, 60-965 Poznan, Poland
autor
  • Chair of Virtual Engineering, Poznan University of Technology, 24 Jana Pawla II, 60-965 Poznan, Poland
autor
  • Chair of Virtual Engineering, Poznan University of Technology, 24 Jana Pawla II, 60-965 Poznan, Poland
autor
  • Chair of Virtual Engineering, Poznan University of Technology, 24 Jana Pawla II, 60-965 Poznan, Poland
Bibliografia
  • [1] S. Bendsoe, M. Philip, and O. Sigmund, Topology Optimization: Theory, Methods, and Applications, Springer Science & Business Media, 2013.
  • [2] T. Lewiński, S. Czarnecki, G. Dzierżanowski, and T. Sokół, “Topology optimization in structural mechanics”, Bull. Pol. Ac.: Tech. 61(1), 23‒37 (2013).
  • [3] L. Wang, A. Williams, and R. Llamas, “Aircraft wing structural optimisation with manufacturing considerations”, 8th Symposium on Multidisciplinary Analysis and Optimization (2000).
  • [4] L. Krog, A. Tucker, and G. Rollema, “Application of topology, sizing and shape optimization methods to optimal design of aircraft components”, 3rd Altair UK HyperWorks Users Conference (2002).
  • [5] L. Krog, A. Tucker, M. Kemp, and R. Boyd, “Topology optimization of aircraft wing box ribs”, 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (2004).
  • [6] M. Stettner and G. Schuhmacher, “Optimization assisted design of military transport aircraft structures”, Altair Optimization Technology Conference OTC04, Troy (2004).
  • [7] K. Maute and M. Allen, “Conceptual design of aeroelastic structures by topology optimization”, Structural and Multidisciplinary Optimization 27(1), 27–42 (2004).
  • [8] S. Liu, X. An, and H. Jia, “Topology optimization of beam cross-section considering warping deformation”, Structural and Multidisciplinary Optimization 35(5), 403–411 (2008).
  • [9] K. A. James, J. Martins, and J. Hansen, “Threedimensional structural topology optimization of an aircraft wing using level set methods”, 12th AIAA/ISSMO Multidisciplinary and Optimization Conference, Victoria (2008).
  • [10] E. Oktay, H. Akay, and O. Merttopcuoglu, “Parallelized structural topology optimization and CFD coupling for design of aircraft wing structures”, Computers & Fluids 49(1), 141–145 (2011).
  • [11] E. Oktay, H.U. Akay, and O.T. Sehitoglu, “Threedimensional structural topology optimization of aerial vehicles under aerodynamic loads”, Computers & Fluids 92, 225–232 (2014).
  • [12] S. Sleesongsom and S. Bureerat, “New conceptual design of aeroelastic wing structures by multi-objective optimization”, Engineering Optimization 45(1), 107–122 (2013).
  • [13] R. Huiskes, R. Ruimerman, G.H. Van Lenthe, and J.D. Janssen, “Effects of mechanical forces on maintenance and adaptation of form in trabecular bone”, Nature 405(6787), 704–706 (2000).
  • [14] G.L. Niebur, M.J. Feldstein, J.C. Yuen, T.J. Chen, and T.M. Keaveny, “High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone”, Journal of Biomechanics 33(12), 1575–1583 (2000).
  • [15] K. Tsubota, T. Adachi, and Y. Tomita, “Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state”, Journal of Biomechanics 35(12), 1541–1551 (2002).
  • [16] R. Ruimerman, B. van Rietbergen, P. Hilbers, and R. Huiskes, “A 3-dimensional computer model to simulate trabecular bone metabolism”, Biorheology 40(1, 2, 3), 315–320 (2003).
  • [17] M. Nowak, “From the idea of bone remodelling simulation to parallel structural optimization”, Numerical Methods for Differential Equations, Optimization, and Technological Problems, Springer, 335–344 (2013).
  • [18] M. Nowak, “A generic 3-dimensional system to mimic trabecular bone surface adaptation”, Computer Methods in Biomechanics and Biomedical Engineering 9(5), 313–317 (2006).
  • [19] W. Roux, Gesammelte Abhandlungen über Entwicklungsmechanik der Organismen II, Leipzig, 1895.
  • [20] F. Pauwels, Biomechanics of the Locomotor Apparatus, Springer-Verlag, Berlin, 1963.
  • [21] D.R. Carter, T.E. Orr, and D.P. Fyhrie, “Relationships between loading history and femoral cancellous bone architecture”, Journal of Biomechanics 22(3), 231–244 (1989).
  • [22] H.M. Frost, Laws of Bone Structure, Springfield, Ill: Charles C. Thomas, 1964.
  • [23] J. Telega, A. Galka, and S. Tokarzewski, “Effective moduli of trabecular bone”, Acta Bioeng Biomech 1(1), (1999).
  • [24] R. Huiskes, Computational Theories of Bone Modeling and Remodeling, Advanced Course on Modelling in Biomechanics, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 2003.
  • [25] R. Huiskes, H. Weinans, J. Grootenboer, M. Dalstra, M. Fudala, and T. J. Slooff, “Adaptive bone remodelling theory applied to prosthetic- design analysis”, Journal of Biomechanics 20, 1135–1150 (1987).
  • [26] Z. Wasiutynski, “On the congruency of the forming according to the minimum potential energy with that according to equal strength”, Bull. Pol. Ac.: Tech 8(6), 259–268 (1960).
  • [27] K. Dems and Z. Mroz, “Multiparameter structural shape optimization by finite element method”, Int. J. Num. Meth. Eng. 13, 247–263 (1978).
  • [28] P. Pedersen, “Optimal designs-structures and materials problems and tools”, 2003.
  • [29] R. Roszak, P. Posadzy, W. Stankiewicz, and M. Morzynski, “Fluidstructure interaction for large scale complex geometry and non-linear properties of structure”, Archives of Mechanics 61(1), 3–27 (2009).
  • [30] M. Nowak, “Structural optimization system based on trabecular bone surface adaptation”, Structural and Multidisciplinary Optimization 32(3), 241–249 (2006).
  • [31] H. Hausa, M. Nowak, and R. Roszak, “The coupled aeroelastic and structural optimization environment”, 21st Fluid Mechanics Conference, Krakow (2014).
  • [32] M. Nowak, “On some properties of bone functional adaptation phenomenon useful in mechanical design”, Acta Bioeng Biomech 12(2), 49–54 (2010).
  • [33] D. Gaweł and M. Nowak, “Accessible visualisation of topology optimisation results”, 20th International Conference on Computer Methods in Mechanics, Poznan (2013).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01c05c21-134d-473a-934c-cbe66915bb70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.