Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Objective: The presence of tumor hypoxia is known to correlate with poor patient prognosis. Measurement of tissue oxygen concentration can be challenging, but recent advancements using positron annihilation lifetime spectroscopy (PALS) in three-dimensional positron emission tomography (PET) scans have shown promise for hypoxia detection. In this work, a novel method for estimating the orthopositronium lifetime in PALS is presented. Methods: We have developed an analytical method based on moments of the PALS histogram to estimate the orthopositronium lifetime. The method was characterized with respect to estimation bias and variance, and the bias-minimizing moments were found for various orthopositronium lifetimes. Results: For sufficient statistical power, the method produces monotonic, stable estimates. For cases with a lower number of photon counts, the method was characterized, and solutions are presented to correct for bias and estimation variability. For most cases, the bias-minimizing moments were n = 10, 11, 12. Conclusions: This novel method does not require curve-fitting and thus it is less computationally intensive than methods which fit the PALS histogram. This method will be extended to and continue to be improved for use in positronium lifetime imaging.
Czasopismo
Rocznik
Strony
40--48
Opis fizyczny
Bibliogr. 15 poz., tab., wykr.
Twórcy
autor
- Student, Department of Radiology University of Chicago, Chicago, IL, USA
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
autor
- Department of Computer Science, University of Minnesota, Minneapolis, MN, USA
autor
- Department of Radiology, University of Chicago, Chicago, IL, USA
autor
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
autor
- Department of Radiology, University of Chicago, Chicago, IL, USA
Bibliografia
- 1. Moskal P, Stępień EŁ. Positronium as a biomarker of hypoxia. Bio-Algorithms Med-Systems. 2021;17(4):311-9. doi: https://doi.org/10.1515/bams-2021-0189.
- 2. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Sci. Adv. 2021;7(42):eabh4394. doi: https://doi.org/10.1126/sciadv.abh4394.
- 3. Moskal P, Baran J, Bass S, Choiński J, Chug N, Curceanu C, et al. Positronium image of the human brain in vivo. Sci. Adv. 2024;10(37):eadp2840. doi: https://doi.org/10.1126/sciadv.adp2840.
- 4. Shibuya K, Saito H, Nishikido F, Takahashi M, Yamaya T. Oxygen sensing ability of positronium atom for tumor hypoxia imaging. Commun. Phys. 2020;3(1):1-8. doi: https://doi.org/10.1038/s42005-020-00440-z.
- 5. Ore A, Powell JL. Three-Photon Annihilation of an Electron-Positron Pair. Phys. Rev. 1949;75(11):1696-9. doi: https://doi.org/10.1103/PhysRev.75.1696.
- 6. Cassidy DB. Experimental progress in positronium laser physics. Eur. Phys. J. D. 2018;72(3):53. doi: https://doi.org/10.1140/epjd/e2018-80721-y.
- 7. Dulski K, Zgardzinska B, Bialas P, Curceanu C, Czerwinski E, Gajos A, et al. Analysis procedure of the positronium lifetime spectra for the J-PET detector. Acta Phys. Pol. A, 2017;132(5):1637-41. doi: https://doi.org/10.12693/APhysPolA.132.1637.
- 8. Dulski K, on behalf of the J-PET collaboration. PALS avalanche - A new PAL spectra analysis software. Acta Phys. Pol. A. 2020;137:167–170. doi: https://doi.org/10.12693/APhysPolA.137.167.
- 9. Shibuya K, Saito H, Tashima H, Yamaya T. Using inverse Laplace transform in positronium lifetime imaging. Phys. Med. Biol. 2022;67(2):025009. doi: https://doi.org/10.1088/1361-6560/ac499b.
- 10. Conti M. Improving time resolution in time-of-flight PET. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2011;648:S194-S8. doi: https://doi.org/10.1016/j.nima.2010.11.171.
- 11. Stepanov S, Bokov A, Ilyukhina O, Byakov V. Dissolved oxygen and positronium atom in liquid media. Radioelectron. Nanosyst. Inf. Technol. 2020;12:107-14. doi: https://doi.org/10.17725/rensit.2020.12.107.
- 12. Liu J, Malekzadeh M, Mirian N, Song T-A, Liu C, Dutta J. Artificial Intelligence-based Image Enhancement in PET Imaging: Noise Reduction and Resolution Enhancement. PET Clin. 2021 Oct;16(4):553-76. doi: https://doi.org/10.1016/j.cpet.2021.06.005.
- 13. Hashimoto F, Onishi Y, Ote K, Tashima H, Reader AJ, Yamaya T. Deep learning-based PET image denoising and reconstruction: a review. Radiol. Phys. Technol. 2024;17(1):24-46. doi: https://doi.org/10.1007/ s12194-024-00780-3.
- 14. Schaefferkoetter J, Yan J, Ortega C, Sertic A, Lechtman E, Eshet Y, et al. Convolutional neural networks for improving image quality with noisy PET data. EJNMMI Res. 2020;10(1):105. doi: https://doi.org/10.1186/ s13550-020-00695-1.
- 15. Hanggi D, Carr PW. Errors in exponentially modified Gaussian equations in the literature. Anal. Chem. 1985;57(12):2394-5. doi: https://doi.org/10.1021/ac00289a051.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01bf04ea-1ece-4ab6-828e-bea5cb20b5b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.