PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Optimal allocation of reliability improvement target based on multiple correlation failures and risk uncertainty

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optimal allocation of the reliability improvement target is essential for the system optimization design. In order to solve the problems that the optimization model is with loss of generality and the validity of the optimal solution is weakened, an optimal allocation method is proposed by considering multiple correlation failures and risk uncertainty in this paper. Two new concepts are presented, such as independent failure results in basic risk, and correlation failure leads to disturbance risk. A risk assessment machinery of “actual risk = basic risk + disturbance risk” is proposed. The action mechanisms of the three correlation failures are studied based on the cooperation game theory, and the generalized risk models are given under probability measure. Considering the improvement cost, the expectation and the variance of the reduction of system risk, a multi-objective optimal allocation model is developed, which is solved by using the PSO algorithm. Finally, the proposed optimal allocation is implemented at the 2-stage NGW planetary reducer, and the results show that it is more efficient and feasible for engineering practice.
Rocznik
Strony
art. no. 8
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Lanzhou University of Technology, School of Mechanical and Electrical Engineering, Lanzhou, 730050, China
  • Lanzhou University of Technology, School of Mechanical and Electrical Engineering, Lanzhou, 730050, China
  • Lanzhou University of Technology, School of Mechanical and Electrical Engineering, Lanzhou, 730050, China
autor
  • Xuzhou XCMG Mining Machinery Co., Ltd., Xuzhou, 221000, China
autor
  • Lanzhou University of Technology, School of Mechanical and Electrical Engineering, Lanzhou, 730050, China
Bibliografia
  • 1. Abdelkader R, Abdelkader Z, Mustapha R, et al. Optimal allocation of reliability in series parallel production system. Search Algorithms for Engineering Optimization 2013; http://dx.doi.org/10.5772/55725.
  • 2. Cao Y, Liu S, Fang Z, et al. Reliability allocation for series‐parallel systems subject to potential propagated failures. Quality and Reliability Engineering International 2020; 36(2): 565-576, https://doi.org/10.1002/qre.2591.
  • 3. Cao Y, Liu S, Fang Z, et al. Reliability improvement allocation method considering common cause failures. IEEE Transactions on Reliability 2019; 69(2): 571-580, https://doi.org/10.1109/TR.2019.2935633.
  • 4. Chen Y, Ran Y, Wang Z, et al. Meta-action reliability-based mechanical product optimization design under uncertainty environment. Engineering Applications of Artificial Intelligence 2021; 100: 104174, https://doi.org/10.1016/j.engappai.2021.104174.
  • 5. Chi B, Wang Y, Hu J, et.al. Reliability assessment for micro inertial measurement unit based on accelerated degradation data and copula theory. Eksploatacja i Niezawodnosc–Maintenance and Reliability 2022; 24 (3): 554–563, https://doi.org/10.17531/ein.2022.3.16
  • 6. Coit D W, Zio E. The evolution of system reliability optimization. Reliability Engineering & System Safety 2019; 192: 106259, https://doi.org/10.1016/j.ress.2018.09.008.
  • 7. Dai Y S, Xie M, Poh K L, et al. A model for correlated failures in N-version programming. IIE Transactions 2004; 36(12): 1183-1192, https://doi.org/10.1080/07408170490507729.
  • 8. Department of the Army. TM 5-689-4. Failure modes, effects and criticality analysis (FMECA) for command, control, communications, computer, intelligence, surveillance, and reconnaissance (C4ISR) facilities 2006.
  • 9. Duan J, Xie N, Li L. Optimal buffer allocation in multi-product repairable production lines based on multi-state reliability and structural complexity. KSII Transactions on Internet and Information Systems (TIIS) 2020; 14(4): 1579-1602, https://doi.org/ 10.3837/tiis. 2020.04.010.
  • 10. Ewing F J, Thies P R, Shek J, et al. Probabilistic failure rate model of a tidal turbine pitch system. Renewable Energy 2020; 160: 987-997, https://doi.org/10.1016/j.renene.2020.06.142.
  • 11. Fiondella L, Xing L. Discrete and continuous reliability models for systems with identically distributed correlated components. Reliability Engineering & System Safety 2015; 133: 1-10, https://doi.org/10.1016/j.ress.2014.08.004.
  • 12. Gholamghasemi M, Akbari E, Asadpoor M B, et al. A new solution to the non-convex economic load dispatch problems using phasor particle swarm optimization. Applied Soft Computing 2019; 79: 111-124, https://doi.org/10.1016/j.asoc.2019.03.038.
  • 13. Jia S, Yan C, Zhang K, et al. Reliability allocation of planetary reducer based on advanced integrated factors allocation method. Journal of mechanical strength 2023; 45(4): 117-127. (in Chinese )
  • 14. Johnston W, Quigley J, Walls L. Optimal allocation of reliability tasks to mitigate faults during system development. IMA Journal of Management Mathematics 2006; 17(2): 159-169, https://doi.org/10.1093/imaman/dpi033.
  • 15. Kanagaraj G, Jawahar N. Optimal redundancy allocation for a reliability-based total cost of ownership model using genetic algorithm. International Journal of Reliability and Safety 2011; 5(2): 158-181, https://doi.org/10.1504/IJRS.2011.039301.
  • 16. Kim D, Kim K O. Optimal allocation of reliability improvement target under dependent component failures. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2022; 236(5): 866-878, https://doi.org/10.1177/ 1748006X211035635.
  • 17. Kim K O, Zuo M J. Effects of subsystem mission time on reliability allocation. IIE Transactions 2015; 47(3): 285-293, https://doi.org/10.1080 /0740817X.2014.929363.
  • 18. Kim K O, Zuo M J. Optimal allocation of reliability improvement target based on the failure risk and improvement cost. Reliability Engineering & System Safety 2018; 180:104-110, https://doi.org/10.1016/j.ress.2018.06.024.
  • 19. Kozine I, Krymsky V. An interval-valued reliability model with bounded failure rates. International Journal of General Systems 2012; 41(8): 760-773, https://doi.org/10.1080/03081079.2012.721201.
  • 20. Kumar A, Pant S, Ram M. System reliability optimization using gray wolf optimizer algorithm. Quality and Reliability Engineering International 2017; 33(7): 1327-1335, https://doi.org/10.1002/qre.2107.
  • 21. Lai Y C, Lu C T, Hsu Y W. Optimal allocation of life-cycle cost, system reliability, and service reliability in passenger rail system design. Transportation Research Record 2015; 2475(1): 46-53, https://doi.org/10.3141/2475-06.
  • 22. Liu Y, Fan J, Mu D. Reliability allocation method based on multidisciplinary design optimization for electromechanical equipment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2015; 229(14): 2573-2585, https://doi.org/10.1177/0954406214560597.
  • 23. Liu Z, Song Q. Reliability allocation multi-objective optimization for products under warranty. 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, Chengdu, China, 2012. https://doi.org/10.1109/ICQR2MSE.2012.6246267.
  • 24. Maryam M, Mahdi K. Developing an economical model for reliability allocation of an electro-optical system by considering reliability improvement difficulty, criticality, and subsystems dependency. Journal of Industrial Engineering International 2019; 15(2):379-393, https://doi.org/10.1007/s40092-018-0273-7.
  • 25. Peyghami S, Fotuhi-Firuzabad M, Blaabjerg F. Reliability evaluation in micro grids with non-exponential failure rates of power units. IEEE Systems Journal 2019; 14(2): 2861-2872, https://doi.org/10.1109/JSYST.2019.2947663.
  • 26. Samanta A, Basu K. A prospective multi-attribute decision making-based reliability allocation method using fuzzy linguistic approach and minimum effort function. International Journal of Mathematics in Operational Research 2020; 17(1): 30-49. https://doi.org/10.1504/IJMOR.2020.109037.
  • 27. Shen L, Zhang Y, Zhao Q, et al. A reliability allocation methodology for mechanical systems with motion mechanisms. IEEE Systems Journal 2022; http://doi.org/ 10.1109/JSYST.2021.3139106.
  • 28. Si S, Liu M, Jiang Z, et al. System reliability allocation and optimization based on generalized Birnbaum importance measure. IEEE Transactions on Reliability 2019; 68(3): 831-843, https://doi.org/10.1109/TR.2019.2897026.
  • 29. Todinov M T. Risk-based reliability allocation and topological optimization based on minimizing the total cost. International Journal of Reliability and Safety 2007; 1(4): 489-512, https://doi.org/10.1504/IJRS.2007.016261.
  • 30. Valis D, Forbelská M, Vintr Z. Forecasting study of mains reliability based on sparse field data and perspective state space models. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 22 (2): 179–191, http://dx.doi.org/10.17531/ein.2020.2.1
  • 31. Wang H, Zhang Y, Yang Z, et al. Investigation on the multifactor reliability allocation method for CNC lathes based on modified criticality and objective information. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018; 232(9): 1647-1656, https://doi.org/10.1177/0954406217706094.
  • 32. Yadav O P, Zhuang X. A practical reliability allocation method considering modified criticality factors. Reliability Engineering & System Safety 2014; 129: 57-65, https://doi.org/10.1016/j.ress.2014.04.003.
  • 33. Yu H, Zhang G, Ran Y, et al. A comprehensive and practical reliability allocation method considering failure effects and reliability costs. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20 (2): 244–251, http://dx.doi.org/10.17531/ein.2018.2.09
  • 34. Zhang W, Ran Y, Zhang G, et al. Optimal allocation of product reliability using novel multi-population particle swarm optimization algorithm. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2022; 236(9):4565-4576, https://doi.org/10.1177/09544062211054001.
  • 35. Zhang Y, Yu T, Song B. A reliability allocation method of mechanism considering system performance reliability. Quality and Reliability Engineering International 2019; 35(7): 1−21, https://doi.org/10.1002/qre.2500.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01bef049-1de4-469d-bed4-fed9e7098d53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.