PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synergistyczne działanie flukonazolu i laktonów ftalidowych jako czynnik ograniczający stosowanie leków azolowych w leczeniu kandidoz

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Synergistic effect of fluconazole and phtalide lactones as a factor limiting the use of azole drugs against candidiasis
Języki publikacji
PL
Abstrakty
EN
The resistance of Candida albicans and other pathogenic yeasts to azole antifungal drugs has increased rapidly in recent years and is a significant problem in clinical therapy. The current state of pharmacological knowledge precludes the withdrawal of azole drugs, as no other active substances have yet been developed that could effectively replace them. Therefore, one of the anti-yeast strategies may be therapies that can rely on the synergistic action of natural compounds and azoles, limiting the use of azole drugs against candidiasis. Synergy assays perperformed in vitro were used to assess drug interactions Fractional Inhibitory Concentration Index. The synergistic effect of fluconazole (1) and three synthetic lactones identical to those naturally occurring in celery plants—3-n-butylphthalide (2), 3-n-butylidenephthalide (3), 3-n-butyl-4,5,6,7-tetrahydrophthalide (4)—against Candida albicans ATCC 10231, C. albicans ATCC 2091, and C. guilliermondii KKP 3390 was compared with the performance of the individual compounds separately. MIC90 (the amount of fungistatic substance (in µg/mL) inhibiting yeast growth by 90%) was determined as 5.96–6.25 µg/mL for fluconazole (1) and 92–150 µg/mL for lactones 2–4. With the simultaneous administration of fluconazole (1) and one of the lactones 2–4, it was found that they act synergistically, and to achieve the same effect it is sufficient to use 0.58–6.73 µg/mL fluconazole (1) and 1.26–20.18 µg/mL of lactones 2–4. Based on biological research, the influence of the structure on the fungistatic activity and the synergistic effect were determined.
Rocznik
Strony
555--567
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
  • Wydział Biotechnologii i Nauk o Żywności, Uniwersytet Przyrodniczy we Wrocławiu, ul. C. K. Norwida 25, 50-375 Wrocław
Bibliografia
  • [1] B. Mishra, A.K. Mishra, S. Kumar, S.K. Mandal, Kumar, K.-H. Baek, Y.K. Mohanta, Metabolites 2021, 12, 12.
  • [2] D.K. Singh, R. Tóth, A. Gácser, Front. Cell. Infect. Microbiol. 2020, 10, 94.
  • [3] M. Staniszewska, Ł. Kuryk, A. Gryciuk, J. Kawalec, M. Rogalska, J. Baran, E.Łukowska-Chojnacka,; Kowalkowska, A. Molecules 2021, 26, 5008.
  • [4] R.A. Smego, H. Ahmad, Medicine 2011, 90, 237.
  • [5] M.E. Akler,. H.Vellend, D.M. McNeely, S.L. Walmsley, W.L. Gold, Clin. Infect. Dis. 1995, 20, 657.
  • [6] D.F. Bavaro, F. Balena, L. Ronga, F. Signorile, F. Romanelli, S. Stolfa, E. Sparapano, C. de Carlo, A. Mosca, L. Monno, i inni. J. Med. Mycol. 2022, 32, 101206.
  • [7] J.C.R. Corrêa, H.R.N. Salgado, Crit. Rev. Anal. Chem. 2011, 41, 124.
  • [8] N. Fattouh, D. Hdayed, G. Geukgeuzian, S. Tokajian, R.A. Khalaf, Fungal Genet. Biol. 2021, 153, 103575.
  • [9] M.A. Jacobson, D.K. Hanks, L.D. Ferrell, Am. J. Med. 1994, 96, 188.
  • [10] T. Bühler, M. Medinger, J. Bouitbir, S.Krähenbühl, A. Leuppi-Taegtmeyer, Front. Pharmacol. 2019, 10, 645.
  • [11] K.R. Beck, A. Odermatt, Mol. Cell. Endocrinol. 2021, 524, 111168.
  • [12] S. Bhattacharya, S. Sae-Tia, B.C. Fries, Antibiotics 2020, 9, 312.
  • [13] A. Agrawal, A. Singh, R. Verma, A. Murari, J. Oral Maxillofac. Pathol. 2014, 18, 81.
  • [14] K. Spettel, W. Barousch, A. Makristathis, I. Zeller, M. Nehr, B. Selitsch, M. Lackner, P.-M. Rath, J. Steinmann, B. Willinger, PLOS ONE 2019, 14, e0210397.
  • [15] M.T. Yassin, A.A. Mostafa, A.A. Al-Askar, R. Bdeer, Eur. J. Med. Res. 2020, 25, 1.
  • [16] Becher, R.; Wirsel, S.G.R. Appl. Microbiol. Biotechnol. 2012, 95, 825.
  • [17] P.-Y. Chen, Y.-C. Chuang, U.-I. Wu, H.-Y. Sun, J.-T. Wang, W.-H. Sheng, Y.-C. Chen, S.-C. Chang, S.-C. J. Fungi 2021, 7, 612.
  • [18] A .Arastehfar, F. Daneshnia, A. Hafez, S. Khodavaisy, M.J. Najafzadeh, A. Charsizadeh, H. Zarrinfar, [23]Med. Mycol. 2020, 58, 766.
  • [19] X. Fan, M.Xiao, D. Zhang, , J.J. Huang, H. Wang, X. Hou, L. Zhang, F. Kong, S.C Chen, Z.H. Tong, i inni Clin. Microbiol. Infect. 2019, 25, 885.
  • [20] S.A. Flowers, B Colón, S.G. Whaley, M.A. Schuler, P.D. Rogers, Antimicrob. Agents Chemother. 2015, 59, 450.
  • [21] K.E. Pristov, M.A. Ghannoum, Clin. Microbiol. Infect. 2019, 25, 792.
  • [22] A. León, M. Del-Ángel, J.L. Ávila, G. Delgado, Prog Chem. Org. Nat. Prod. 2017, 104, 127.
  • [23] C. Ding, Y. Sheng, Y. Zhang, J. Zhang, G. Du, Planta Med. 2008, 74, 1684.
  • [24] R.M. Spréa,; Â. Fernandes,.; T.C. Finimundy,; C. Pereira,; M.J. Alves,; R.C. Calhelha,; C. Canan,; L. Barros, J.S. Amaral, I.C.F.R. Ferreira, Resources 2020, 9, 81.
  • [25] A. León, R.A. Toscano, J. Tortoriello, G. Delgado, Nat. Prod. Res. 2011, 25, 1234.
  • [26] J.J. Beck, S.-C Chou,. J. Nat. Prod. 2007, 70, 891.
  • [27] R.A. Momin, M.G. Nair, J. Agric. Food Chem. 2001, 49, 142.
  • [28] J. Pannek, J. Gach, F. Boratyński, T.Olejniczak, Phytother. Res. 2018, 32, 1459.
  • [29] L. Fan,; B. Luo,; Z. Luo,; L. Zhang,; J. Fan,; W. Xue,; L.Tang,; Y. Li, Für Nat. B 2019, 74, 811.
  • [30] B. Xiao,; J. Yin,; M. Park,; J. Liu,; J.L. Li,; E. Kim,; J. Hong,; H.Y. Chung,; J.H. Jung, Bioorg. Med.Chem. 2012, 20, 4954
  • [31] J. Jia, C. Wei, J. Liang, A. Zhou, X. Zuo, H. Song, L. Wu, X. Chen, S. Chen, J. Zhang, i inni Allzheimer’s Dement. 2016, 12, 89.
  • [32] X. Wang, L. Wang, X. Sheng, Z. Huang, T. Li, M. Zhang, J. Xu, H. Ji, J. Yin, Y. Zhang, Org. Biomol. Chem. 2014, 12, 5995.
  • [33] X. Diao, P. Deng, C. Xie, X. Li, D. Zhong, Y. Zhang, X. Chen, Drug Metab. Dispos. 2013, 41, 430.
  • [34] J. Gach, T. Olejniczak, P. Krężel, F. Boratyński, Int. J. Mol. Sci. 2021, 22, 7600.
  • [35] X. Chen, S. Deng, Q. Lei, Q. He, Y. Ren,; Y. Zhang, J. Nie,; W. Lu, Front. Cell Dev. Biol. 2020, 8, 598020
  • [36] X. Li, X. Wang, L. Miao, Y. Guo, R. Yuan, H. Tian, Biochem. Biophys. Res. Commun. 2021, 556, 99.
  • [37] Liu, X.; Liu, R.; Fu, D.; Wu, H.; Zhao, X.; Sun, Y.; Wang, M.; Pu, X. Aging 2021, 13, 3763.
  • [38] B. Wang, C. Wu, Z. Chen, P. Zheng, Y. Liu, J. Xiong, J. Xu, P. Li, A.A. Mamun, L. Ye, i inni Acta Pharmacol. Sin. 2021, 42, 347
  • [39] Y. Gong, W Liu, X. Huang, L. Hao, Y. Li, S. Sun, Front. Microbiol. 2019, 10, 1461.
  • [40] Z. Yan, H. Hua, Y. Xu,; L.P. Samaranayake, Altern. Med. 2012, 12, 1.
  • [41] J. Meletiadis, S. Pournaras, E. Roilides, T.J. Walsh, Antimicrob. Agents Chemother. 2010, 54, 602.
  • [42] V. Lorian, Antibiotics in Labolatory Medicine, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 200545
  • [43] A. Daina, O. Michielin, V. Zoete, SwissADME: Sci. Rep. 2017, 7, 42717.
  • [44] D.S. Druzhilovskiy, A.V. Rudik, D.A. Filimonov, T.A. Gloriozova, A.A. Lagunin, A.V. Dmitriev, P.V. Pogodin, V.I. Dubovskaya, S.M. Ivanov, O.A. Tarasova, i inni. Computational platform Way2Drug: Russ. Chem. Bull. 2017, 66, 1832.
  • [45] R. Tamaian, A. Moţ, R. Silaghi-Dumitrescu, I. Ionuţ, A. Stana, O. Oniga, C. Nastasă, DBenedec, B. Tiperciuc, Molecules 2015, 20, 22188.
  • [46] Lipinski, C.A. Drug Discov. Today Technol 2004, 1, 337.
  • [47] T. Chmiel, A. Mieszkowska, D. Kempińska-Kupczyk, A. Kot-Wasik, J. Namieśnik, Z. Mazerska, Microchem. J. 2019, 146, 393.
  • [48] G.A. Norman, JACC Basic Transl. Sci. 2020, 5, 387.
  • [49] S. Kumar, Expert Opin. Drug Metab. Toxicol. 2010, 6, 11.
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01b14f39-e677-499a-b1ca-7123cc010fb8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.