PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemical characterization and palaeoenvironmental implications of lipids in Neogene lignites and lignitic shales in NW Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The lipophilic biomarker distributions in lipids of Neogene lignites and lignitic shales in western Pomerania and the midlands of Poland are presented. Twenty-six lignite samples and seven lignitic shales were obtained from twenty-four boreholes. Their extracts were separated, using thin-layer chromatography, and the saturate and aromatic fractions were analyzed by gas chromatography-mass spectrometry. The molecular compositions of n-alkanes, isoprenoids, n-alkylcyclohexanes, n-alkylbenzenes, tri- and tetracyclic diterpenoids, pentacyclic triterpenoids, as well as polycyclic aromatic hydrocarbons (PAHs) with up to five rings, were determined. The samples displayed n-alkane distributions in the range of C14–C35 and high odd-over-even carbon number predominances (CPI(25–33) from 2.9 to 7.9). Diterpanes consisted primarily of phyllocladane, abietane, isopimarane, labdane, and kaurane structures, although their abundances varied among the samples. Hopanes exhibited the biological and geochemical characteristics of low-maturity organic matter. Minor oleanane triterpenoids from angiosperms were also found. A few samples displayed evidence of biodegradation on the basis of the advanced isomerization of αβ-hopanes and the presence of short-chained n-alkanes, n-alkylcyclohexanes, and n-alkylbenzenes. A more mature stage of the above biomarkers also may have resulted in part from the oxidation of organic matter. The lignite source materials were derived from conifer and angiosperm flora as well as microbial remnants. The contribution from marine phytoplankton was excluded on the basis of the lack of C27 steroids. PAHs were predominantly perylene or phenanthrene, with minor other analogues. Thus, the data support progressive lacustrine/lagoonal sedimentation in the palaeoenvironmental mires.
Rocznik
Strony
447--466
Opis fizyczny
Bibliogr. 120 poz., rys., tab., wykr.
Twórcy
  • University of Wrocław, Faculty of Earth Sciences and Environmental Management, Maksa Borna 9, 50-204 Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Environmental Engineering, Grunwaldzki 13, 50-377 Wrocław, Poland
  • Department of Chemistry, College of Science, Oregon State University, Corvallis, OR 97331, USA
  • Polish Oil and Gas Company, Zielona Góra Branch, Staszica 9, 64-920 Piła, Poland
  • University of Wrocław, Faculty of Chemistry, F. Joliot-Curie 14, 50-383 Wrocław, Poland
Bibliografia
  • 1. Ageta, H. & Arai, Y., 1983. Fern constituents: Pentacyclic triterpenoids isolated from Polypodium niponicum and P. formosanum. Phytochemistry, 22: 1801-1808.
  • 2. Alexander, G., Hazai, I., Grimalt, J. O. & Albaiges J., 1987. Occurrence and transformation of phyllocladanes in brown coals from Norgad Basin, Hungary. Geochimica et Cosmochimica Acta, 51: 2065-2073.
  • 3. Allen, J. E., Fornery, F. W. & Markovetz, A. J., 1971. Microbial degradation of n-alkanes. Lipids, 6: 448-452.
  • 4. Bechtel, A., Gruber, W., Sachsenhofer, R. F., Gratzer, R. & Püttmann, W., 2003. Depositional environment of the Late Miocene Hausruck lignite (Alpine Foreland Basin): insights from petrography, organic geochemistry and stable carbon isotopes. International Journal of Coal Geology, 53: 153-180.
  • 5. Bechtel, A., Markic, M., Sachsenhofer, R. F., Jelen, B., Gratzer, R., Lücke, A. & Püttmann, W., 2004. Paleoenvironment of the upper Oligocene Trbovlje coal seam (Slovenia). International Journal of Coal Geology, 57: 23-48.
  • 6. Bechtel, A., Sachsenhofer, R. F., Kolcon, I., Gratzer, R., Otto, A. & Püttmann, W., 2002. Organic geochemistry of the Lower Miocene Oberdorf lignite (Styrian Basin, Austria): its relation to petrography, palynology and the paleoenvironment. International Journal of Coal Geology, 51: 31-57.
  • 7. Bechtel, A., Sachsenhofer, R. F., Zdravkov, A., Kostova, I. & Gratzer, R., 2005. Influence of floral assemblage, facies and diagenesis on petrography and organic geochemistry of the Eocene Bourgas coal and the Miocene Maritza-East lignite (Bulgaria). Organic Geochemistry, 36: 1498-1522.
  • 8. Bechtel, A., Widera, M., Lücke, A., Groß, D. & Woszczyk, M., 2020. Petrological and geochemical characteristics of xylites and associated lipids from the First Lusatian lignite seam (Konin Basin, Poland): Implications for floral sources, decomposition and environmental conditions. Organic Geochemistery, 147: 104052.
  • 9. Blunt, J. W., Czochanska, Z., Sheppard, C. M., Weston, R. J. & Woolhouse, A. D., 1988. Isolation and structural characterisation of isopimarane in some New Zealand seep oils. Organic Geochemistry, 12: 479-486.
  • 10. Bottari, F., Marsili, A., Morelli, I. & Pacchiani, M., 1972. Aliphatic and triterpenoid hydrocarbons from ferns. Phytochemistry, 11: 2519-2523.
  • 11. Bree, L. G. J., van, Rijpstra, W. I. C. ,Al-Dhabi, N.A., Verschuren, D., Sinninghe Damsté, J. S. & de Leeuw, J. W., 2016. Des-A-lupane in an East African lake sedimentary record as a new proxy for the stable carbon isotopic composition of C3 plants. Organic Geochemistry, 101: 132-139.
  • 12. Brooks, J. D. & Smith, J. W., 1969. The diagenesis of plant lipids during the formation of coal, petroleum and natural gas. II. Coalification and the formation of oil and gas in the Gippsland Basin. Geochimica et Cosmochimica Acta, 33: 1183-1194.
  • 13. Chaffee, A. L., Hoover, D. S., Johns, R. B. & Schweighardt, F. K., 1986. Biological markers extractable from coal. In: Johns, R. B. (ed.), Biological Markers in the Sedimentary Record. Elsevier, Amsterdam, pp. 311-345.
  • 14. Chaffee, A. L. & Johns, R. B., 1983. Polycyclic aromatic hydrocarbons in Australian coals. I. Angularly fused pentacyclic tri- and tetraaromatic components of Victorian brown coal. Geochimica et Cosmochimica Acta, 47: 2141-2155.
  • 15. Chaffee, A. L. & Johns, R. B., 1985. Aliphatic components of Victorian brown coal lithotypes. Organic Geochemistry, 8: 349-365.
  • 16. Corbet, B., Albrecht, P. & Ourisson, G., 1980. Photochemical or photomimetic fossil triterpenoids in sediments and petroleum. Journal of the American Chemical Society, 102: 1171-1173.
  • 17. Cranwell, P. A., 1977. Organic geochemistry of CamLoch (Sutherland) sediments. Chemical Geology, 20: 205-221. Cranwell, P. A., 1982. Lipids of aquatic sediments and sedimenting particulates. Progress in Lipid Research, 21: 271-308.
  • 18. Cranwell, P. A., Eglinton, G. & Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments. Organic Geochemistry, 11: 513-527.
  • 19. Czochanska, Z., Gilbert, D., Philp, R. P., Sherppard, C. M., Weston, R. J., Wood, T. A. & Woolhouse, A. D., 1988. Geochemical application of sterane and triterpane biomarkers to description of oils from the Taranaki basin of New Zealand. Organic Geochemistry, 12: 123-135.
  • 20. Dai,S.,Bechtel,A.,Eble,C.F.,Flores,R.M.,French,D.,Graham,I.T., Hood, M. M., Hower, J. C., Korasidis, V. A., Moore, T. A., Puttmann, W., Wei, Q., Zhao, L. & O'Keefe, J. M. K., 2020. Recognition of peat depositional environments in coal: A review. International Journal of Coal Geology, 219: 1-67.
  • 21. Dehmer, J., 1995. Petrological and organic geochemical investigation of recent peats with known environments of deposition. International Journal of Coal Geology, 28: 111-138.
  • 22. Del Rio, J. C., González-Vila, F. J. & Martín, F., 1992. Variation in the content and distribution of biomarkers in two closely situated peat and lignite deposits. Organic Geochemistry, 18: 67-78.
  • 23. Dev, S., 1989. Terpenoids. In: Rowe, J. W. (ed.), Natural Products of Woody Plants. Vol. 1. Springer, Berlin, pp. 691-807.
  • 24. Didyk, B. M., Simoneit, B. R. T., Brassell, S. C. & Eglinton, G., 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272: 216-221.
  • 25. Dong, J.-Z., Vorkink, W. P. & Lee, M. L., 1993. Origin of longchain alkylcyclohexanes and alkylbenzenes in a coal-bed wax. Geochimica et Cosmochimica Acta, 57: 837-849.
  • 26. Eglinton, G. & Hamilton, R. J., 1967. Leaf epicuticular waxes. Science, 156: 1322-1335.
  • 27. Elie, M., Faure, P., Michels, R., Landais, P. & Griffault, L., 2000. Natural and laboratory oxidation of low-organic-carbon-content sediments: Comparison of chemical changes in hydrocarbons. Energy & Fuels, 14: 854-861.
  • 28. Fabiańska, M., 2007. Organic Geochemistry of Brown Coals from the Selected Polish Basins. Wydawnictwo Uniwersytetu Śląskiego, Katowice, 333 pp. [In Polish, with English and German summaries.]
  • 29. Fabiańska, M. & Kurkiewicz, S., 2013. Biomarkers, aromatic hydrocarbons and polar compounds in the Neogene lignites and gangue sediments of the Konin and Turoszów Brown Coal Basins (Poland). International Journal of Coal Geology, 107: 24-44.
  • 30. Farnum, S. A., Timpe, R. C., Miller, D. J. & Farnum, B. W., 1984. Comparison of hydrocarbons extracted from seven coals by capillary gas chromatography and gas chromatography-mass spectrometry. In: Schubert, H. H. (ed.), The Chemistry of Low-Rank Coals. American Chemical Society Symposium Series 264. Washington, pp. 145-158.
  • 31. Ficken, K. J., Li, B., Swain, D. L. & Eglinton, G., 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31: 745-749.
  • 32. Fu, J. F., Sheng, G., Xu, J., Eglinton, G., Gowar, A. P., Jia, R., Fan, S. & Peng, P., 1990. Applications of biological markers in the assessment of paleoenvironment of Chinese non-marine sediments. Organic Geochemistry, 16: 769-779.
  • 33. Goossens, H., de Leeuw, J. W., Schenck, P. A. & Brassell, S. C., 1984. Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature, 312: 440-442.
  • 34. Gorchs, R., Olivella, M. A. & de las Heras, F. X. C., 2003. New aromatic biomarkers in sulfur-rich coal. Organic Geochemistry, 34: 1627-1633.
  • 35. Gross, D., Bechtel, A. & Harrington, G. J., 2015. Variability in coal facies as reflected by organic petrological and geochemical data in Cenozoic coal beds offshore Shimokita (Japan) - IODP Exp. 337. International Journal of Coal Geology, 152: 63-79.
  • 36. Hagemann, H. W. & Hollerbach, A., 1979. Relationship between the macropetrographic and organic geochemical composition of lignites. In: Douglas, A. G. & Maxwell, J. R. (eds), Advances in Organic Geochemistry. Pergamon Press, Oxford, pp. 631-638.
  • 37. Hautevelle, Y., Michels, R., Malartre, F. & Trouiller, A., 2006. Vascular plant biomarkers as proxies for palaeoflora and palaeoclimatic changes at the Dogger/Malm transition of the Paris Basin (France). Organic Geochemistry, 37: 610-625.
  • 38. Hayatsu, R., McBeth, R. L., Niell, P. H., Xia, Y. & Winans, R. E., 1990. Terpenoid biomarkers in Argonne Premium Coal Samples and their role during coalification. Energy and Fuels, 4: 456-463.
  • 39. Hazai, I., Alexander, G., Essiger, B. & Székely, T., 1988. Identification of aliphatic biological markers in brown coals. Fuel, 67: 973-982.
  • 40. Hazai, I., Alexander, G., Szekely, T., 1989. Study of aromatic biomarkers in brown coal extracts. Fuel, 68: 49-54.
  • 41. He, D., Simoneit, B. R. T., Cloutier, J. B. & Jaffé, R., 2018. Early diagenesis of triterpenoids derived from mangroves in a subtropical estuary. Organic Geochemistry, 12: 196-211.
  • 42. Inglis, G. N., Naafs, B. D. A., Zeng, Y., McClymont, E. L., Evershed, R. P. & Pancost, R. D., 2018. Distribution of geohopanoids in peat: Implications for the use of hopanoid-based proxies in natural archives. Geochimica et Cosmochimica Acta, 224: 249-261.
  • 43. ISO 5068:1983. Brown coals and lignites - Determination of moisture content - Indirect gravimetric method - by ISO TC 27/SC 5/WG 7, Aug 23, 2007.
  • 44. ISO 1171:1997. Solid mineral fuels - Determination of ash content - by ISO TC 27/SC 5/WG 1, Aug 23, 2007.
  • 45. ISO 5071-1:1997. Brown coals and lignites - Determination of the volatile matter in the analysis sample - Part 1: Two-furnace method - by ISO TC 27/SC 5/WG 7, Aug 23, 2007.
  • 46. Itoh, Nobuyasu & Hanari, Nobuyasu, 2010. Possible precursor of perylene in sediments of Lake Biwa elucidated by stable carbon isotope composition. Geochemical Journal, 44: 161-166.
  • 47. Jacob, J., Disnar, J. R., Boussafir, M., Albuquerque, A. L. S., Sifeddine, A. & Turcq, B., 2007. Contrasted distributions of triterpene derivatives in the sediments of Lake Caęó reflect paleoenvironmental changes during the last 20,000 yrs in NE Brazil. Organic Geochemistry, 38: 180-197.
  • 48. Jarolím, V., Hejno, K., Hemmert, F. & Šorm, F., 1965. Über die Zusammensetzung der Braunkohle IX. Über einige aromatische Kohlenwasserstoffe des Harzanteils des Montanwachses. Collection of Czech Chemical Communications, 30: 873-879.
  • 49. Jaroszewicz, E., Bojanowski, M., Marynowski, L., Łoziński, M. & Wysocka, A., 2018. Paleoenvironmental conditions, source and maturation of Neogene organic matter from the siliciclastic deposits of the Orava-Nowy Targ Basin. International Journal of Coal Geology, 196: 288-301.
  • 50. Jiang, C., Alexander, R., Kagi, R. I. & Murray, A. P., 2000. Origin of perylene in ancient sediments and its geological significance. Organic Geochemistry, 31: 1545-1559.
  • 51. Kolcon, I. & Sachsenhofer, R. F., 1999. Petrography, palynology and depositional environments of the early Miocene Oberdorf lignite seam (Styrian Basin, Austria). International Journal of Coal Geology, 41: 275-308.
  • 52. Kovats, E., 1958. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helvetica Chimica Acta, 41: 1915-1932.
  • 53. Kramarska, R., 1999. Zarys geologii czwartorzędu południowo-zachodniej części Bałtyku. In: Borówka, R. K. (ed.), Przewodnik LXX Zjazdu Naukowego Polskiego Towarzystwa Geologicznego. Problemy Geologii, Hydrogeologii i Ochrony Środowiska wybrzeża morskiego Pomorza Zachodniego. Polskie Towarzystwo Geologiczne, Szczecin, pp. 43-52. [In Polish.]
  • 54. Kwiecińska, B. & Wagner, M., 2001. Atlas petrograficzny węgla brunatnego. Litotypy i macerały. Wydawnictwo JAK Andrzej Choczewski, Kraków, pp. 98 [In Polish.]
  • 55. Logan, G. A. & Eglinton, G., 1994. Biogeochemistry of the Miocene lacustrine deposit at Clarkia, northern Idaho, U.S.A. Organic Geochemistry, 21: 857-870.
  • 56. Lohmann, F., Trendel, J.-M., Hetru, C. & Albrecht, P., 1990. C-29 Tritiated ß-amyrin: Chemical synthesis aiming at the study of aromatization processes in sediments. Journal of Labelled Compounds in Radiopharmacy, 28: 377-386.
  • 57. Mackenzie, A. S. & McKenzie, D., 1983. Isomerization and aromatization of hydrocarbons in sedimentary basins formed by extension. Geological Magazine, 20: 417-470.
  • 58. Marynowski, L., Smolarek, J., Bechtel, A., Philippe, M., Kurkiewicz, S. & Simoneit, B. R. T., 2013. Perylene as an indicator of conifer fossil wood degradation by wood-degrading fungi. Organic Geochemistry, 59: 143-151.
  • 59. Moldowan, J. M., Seifert, W. K. & Gallegos, E. J., 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. American Association of Petroleum Geologists Bulletin, 69: 1255-1268.
  • 60. Narkiewicz, M. & Dadlez, R., 2008. Geologiczna regionalizacja Polski - zasady ogólne i schemat podziału w planie podkenozoicznym i podpermskim. Przegląd Geologiczny, 56: 391397. [In Polish.]
  • 61. Noble, R. A., Alexander, R., Kagi, R. I. & Knox, J., 1985. Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments and crude oils. Geochimica et Cosmochimica Acta, 49: 2141-2147.
  • 62. Noble, R. A., Alexander, R., Kagi, R. I. & Knox, J., 1986. Identification of some diterpenoid hydrocarbons in petroleum. Organic Geochemistry, 10: 825-829.
  • 63. Norgate, C. M., Boreham, C. J. & Wilkins, A. J., 1999. Changes in hydrocarbon maturity indices with coal rank and type, Buller Coalfield, New Zealand. Organic Geochemistry, 30: 985-1010.
  • 64. Nott, C. J., Xie, S., Avsejs, L. A., Maddy, D., Chambers, F. M. & Evershed, R. P., 2000. n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climate variation. Organic Geochemistry, 31: 231-235.
  • 65. Otto, A. & Simoneit, B. R. T., 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochimica et Cosmochimica Acta, 65: 3505-3527.
  • 66. Otto, A. & Simoneit, B. R. T., 2002. Biomarkers of Holocene buried conifer logs from Bella Coola and North Vancouver, British Columbia, Canada. Organic Geochemistry, 33: 1241-1251.
  • 67. Otto, A., Simoneit, B. R. T. & Rember, W. C., 2005. Conifer and angiosperm biomarkers in clay sediments and fossil plants from the Miocene Clarkia Formation, Idaho, USA. Organic Geochemistry, 36: 907-922.
  • 68. Otto, A., Walther, H. & Püttmann, W., 1997. Sesqui- and diterpenoid biomarkers preserved in Taxodium rich Oligocene oxbow lake clays, Weisselster basin, Germany. Organic Geochemistry, 26: 105-115.
  • 69. Otto, A., White, J. D. & Simoneit, B. R. T., 2002. Natural product terpenoids in Eocene and Miocene conifer fossils. Science, 297: 1543-1544.
  • 70. Otto, A. & Wilde, V., 2001. Sesqui-, di- and triterpenoids as che- mosystematic markers in extant conifers - a review. Botanical Review, 67: 141-238.
  • 71. Ourisson, G., Albrecht, P. & Rohmer, M., 1979. The hopanoids paleochemistry and paleobiochemistry of a group of natural products. Pure and Applied Chemistry, 51: 709-729.
  • 72. Peters, K. E. & Moldowan, J. M., 1991. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Organic Geochemistry, 17: 47-61.
  • 73. Peters, K. E. & Moldowan, J. M., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall, New Jersey, 363 pp.
  • 74. Peters, K. E., Walters, C. C. & Moldowan, J. M., 2005. The Biomarker Guide. Volume 2: Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge University Press, Cambridge, 1155 pp.
  • 75. Philp, R. P., 1994. Geochemical characteristics of oils derived predominantly from terrigenous source materials. In: Scott, A. C. & Fleet, A. J. (eds), Coal and Coal-bearing Strata as Oilprone Source Rocks? Geological Society Special Publication, 77: 71-91.
  • 76. Philp, R. P., Gilbert, T. D. & Friedrich, J., 1981. Bicyclic sesquiterpenoids and diterpenoids in Australian crude oils. Geochimica et Cosmochimica at Acta, 45: 463-476.
  • 77. Püttmann, W., Wolf, M. & Bujnowska, B., 1991. Chemical characteristics of subbituminous coal lithotypes. Fuel, 70: 227-233.
  • 78. Quirk, M. M., Wardroper,A. M. K., Wheatley, R. E. & Maxwell, J. R., 1984. Extended hopanoids in peat environments. Chemical Geology, 42: 25-43.
  • 79. Radke, M., Welte, D. H. & Willsch, H., 1986. Maturity parameters based on aromatic hydrocarbons: inluence of the organic matter type. Organic Geochemistry, 10: 51-63.
  • 80. Rohmer, M. & Bisseret, P., 1994. Hopanoid and other polyterpenoid biosynthesis in eubacteria. In: Nes, W. D. (ed.), Isopentenoids and other Natural Products, Evolution and Function. ACS Symposium Series 562. American Chemical Society, Washington, DC, pp. 31-43.
  • 81. Rubinstein, I. & Strausz, O. P., 1979. Geochemistry of the thiourea adduct fraction from an Alberta petroleum. Geochimica et Cosmochimica Acta, 43: 1387-1392.
  • 82. Rullkötter, J., Peakman, T. M. & Ten Haven, H. L., 1994. Early diagenesis of terrigenous triterpenoids and its implications for petroleum geochemistry. Organic Geochemistry, 21: 215-233.
  • 83. Sato, O., 1976. A green pigment similar to the Pg fraction of P type humic acids and related compounds produced by litter-decomposing fungi. Soil Science and Plant Nutrition, 22: 269-275.
  • 84. Seifert, W. K. & Moldowan, J. M., 1980. The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. Physics and Chemistry of the Earth, 12: 229-237.
  • 85. Sheng, G-Y., Simoneit, B. R. T., Leif, R. N., Chen, X-Y. & Fu, J-M., 1992. Tetracyclic terpanes enriched in Devonian cuticle humic coals. Fuel, 71: 523-532.
  • 86. Shiojima, K., Arai, Y. & Ageta, H., 1990. Seasonal fluctuation of triterpenoid constituents from dried leaflets of Dryspteris crassirhizoma. Phytochemistry, 29: 1079-1082.
  • 87. Simoneit, B. R. T., 1977. Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance. Geochimica et Cosmochimica Acta, 41: 463-476.
  • 88. Simoneit, B. R. T., 1978. The organic chemistry of marine sediments. In: Riley, J. P. & Chester, R. (eds), Chemical Oceanography 7. Academic Press, New York, pp. 233-311.
  • 89. Simoneit, B. R. T., 1986. Cyclic terpenoids of the geosphere. In: Johns, R. B. (ed.), Biological Markers in the Sedimentary Record. Elsevier, Amsterdam, pp. 43-99.
  • 90. Simoneit, B. R. T., 1998. Biomarker PAHs in the environment. In: Neilson, A. H. (ed.), The Handbook of Environmental Chemistry 3, Part I, PAHs and Related Compounds. Springer Verlag, Berlin, Heidelberg, pp, 176-221.
  • 91. Simoneit, B. R. T. & Didyk, B. M., 1978. Organic geochemistry of Chilean paraffin dirt. Chemical Geology, 23: 21-40.
  • 92. Simoneit,B. R. T.,Grimalt,J. O.,Wang,T-G.,Cox,R. E.,Hatcher,P. G. & Nissenbaum, A., 1986. Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals. Organic Geochemistry, 10: 877-889.
  • 93. Simoneit, B. R. T., Mazurek, M. A., Brenner, S., Crisp, P. T. & Kaplan, I. R., 1979. Organic geochemistry of Recent sediments from Guaymas Basin, Gulf of California. Deep-Sea Research 26A: 879-891.
  • 94. Simoneit, B. R. T., Otto, A., Oros, D. R. & Kusumoto, N., 2019. Terpenoids of the swamp cypress subfamily (Taxodioideae), Cupressaceae, an overview by GC-MS. Molecules, 24: 3036.
  • 95. Simoneit, B. R. T., Rybicki, M., Goryl, M., Bucha, M., Otto, A. & Marynowski, L., 2021. Monoterpenylabietenoids, novel biomarkers from extant and fossil Taxodioideae and sedimentary rocks. Organic Geochemistry, 154: 104172.
  • 96. Simoneit, B. R. T., Otto, A. & Wilde, V., 2003. Novel phenolic biomarker triterpenoids of fossil laticifers in Eocene brown coal from Geiseltal, Germany. Organic Geochemistry, 34: 121-129.
  • 97. Simoneit, B. R. T., Xu, Y., Neto, R. R., Cloutier, J. B. & Jaffé, R., 2009. Photochemical alteration of 3-oxygenated triterpenoids: Implications for the origin of 3,4-seco-triterpenoids in sediments. Chemosphere, 74: 543-550.
  • 98. Stankowski, W., 2000. Problemy geologii kenozoiku Wielkopolski. In: Biernacka, J. & Skoczylas, J. (eds), Geologia i Ochrona Środowiska Wielkopolski. Przewodnik LXXI Zjazdu Polskiego Towarzystwa Geologicznego. Bogucki Wydawnictwo Naukowe S.C., Poznań, pp. 59-69. [In Polish.]
  • 99. Stankowski, W., 2001. The Quaternary stratigraphy correlation of Great Poland Lowland and Central Germany in the light of glacials, interglacials, and ice covers/glaciations taxonomy. Zeitschrift für Geologische Wissenschaften, 29: 93-98.
  • 100. Stefanova, M., Markowa, K., Marinov, S. & Simoneit, B. R. T., 2005. Molecular indicators for coal-forming vegetation of the Miocene Chukurovo lignite, Bulgaria. Fuel, 84: 1830-1838.
  • 101. Stefanova, M., Oros, D. R., Otto, A. & Simoneit, B. R. T., 2002. Polar aromatic biomarkers in the Miocene Maritza-East lignite, Bulgaria. Organic Geochemistry, 33: 1079-1091.
  • 102. Stout, S. A., 1992. Aliphatic and aromatic triterpenoid hydrocarbons in a Tertiary angiospermous lignite. Organic Geochemistry, 18: 51-66.
  • 103. Streibl, M. & Herout, V., 1969. Terpenoids - especially oxygenated mono-, sesqui-, di- and triterpenes. In: Eglinton, G. & Murphy, M. T. J. (eds), Organic Geochemistry - Methods and Results. Springer Verlag, Berlin, pp. 401-424.
  • 104. Swan, E. P., 1968. Extractives of an ancient pine. Bi-Monthly Research Notes. Canadian Forestry Service, 24: 8.
  • 105. Ten Haven, H. L., de Leeuw, J. W., Rullkötter, J. & Sinninghe Damsté, J. S., 1987. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature, 330: 641-643.
  • 106. Ten Haven, H. L., de Leeuw, J. W. & Schenck, P. A., 1985. Organic geochemical studies of a Messinian evaporatic basin, northern Apennines (Italy) I: Hydrocarbon biological markers for a hypersaline environment. Geochimica et Cosmochimica Acta, 49: 2181-2191.
  • 107. Ten Haven, H. L., de Leeuw, J. W. & Sinninghe Damsté, J. S., 1988. Application of biological markers in the recognition of palaeo-hypersaline environments. In: Fleet, A. J., Kelts, K. & Talbot, M. R. (eds), Lacustrine Petroleum Source Rocks. Geological Society of London Special Publication 40. Blackwell Scientific Publications, Oxford, pp. 123-130.
  • 108. Ten Haven, H. L., Peakman, T. M. & Rullkötter, J., 1992. Early diagenetic transformation of higher-plant triterpenoids in deep- sea sediments from Baffin bay. Geochimica et Cosmochimica Acta, 56: 2001-2024.
  • 109. Ten Haven, H. L. & Rullkötter, J., 1989. Oleanene, ursene and other terrigenous triterpenoid biological marker hydrocarbons in Baffin Bay sediments. Proceedings of the Ocean Drilling Program, Scientific Results, 105: 233-239.
  • 110. Thomas, B. R., 1969. Kauri resins modern and fossil. In: Eglinton, G. & Murphy, M. T. J. (eds), Organic Geochemistry - Methods and Results. Springer, Berlin, pp. 599-618.
  • 111. Tissot, B. & Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer Berlin, Heidelberg, XXI, 702 pp.
  • 112. Tuo, J. & Philp, R. P., 2005. Saturated and aromatic diterpenoids and triterpenoids in Eocene coals and mudstones from China. Applied Geochemistry, 20: 367-381.
  • 113. Tuo, J., Wang, X., Chen, J. & Simoneit, B. R. T., 2003. Aliphatic and diterpenoid hydrocarbons and their individual carbon isotope compositions in coals from the Liaohe Basin, China. Organic Geochemistry, 34: 1615-1625.
  • 114. Van Dorsselaer, A., Albrecht, P. & Connan, J., 1977. Changes in composition of polycyclic alkanes by thermal maturation (Yallourn lignite, Australia). In: Campos, R. & Goni, J. (eds), Advances in Organic Geochemistry 1975. Enadimsa, Madrid, pp. 53-59.
  • 115. Van Dorsselaer, A., Ensminger, A., Spyckerelle, C., Dastillung, M., Sieskind, O., Arpino, P., Albrecht, P., Ourisson, G., Brooks, P. W., Gaskell, S. J., Kimble, B. J., Philp, R. P., Maxwell, J. R. & Eglinton, G., 1974. Degraded and extended hopane derivatives (C27 to C35) as ubiquitous geochemical markers. Tetrahedron Letters, 14: 1349-1352.
  • 116. Van Krevelen, D. W., 1993. Coal Typology-Physics-Chemistry-Constitution. Elsevier, Amsterdam, 979 pp.
  • 117. Volkman, J. K., 1988. The biological marker compounds as indicators of the depositional environments of petroleum source rocks. In: Fleet, A. J., Kelts, K. & Talbot, M. R. (eds), Lacustrine Petroleum Source Rocks, Geochemical Society Special Publications, 40: 103-122.
  • 118. Volkman, J. K. & Maxwell, J. R., 1986. Acyclic isoprenoids as biological markers. In: Johns, R. B. (ed.), Biological Markers in the Sedimentary Record. Elsevier, Amsterdam, pp. 1-42.
  • 119. Wakeham, S. G., Schaffner, C. & Giger, W., 1980. Polycyclic aromatic hydrocarbons in Recent lake sediments - II. Compounds derived from biogenic precursors during early diagenesis. Geochimica et Cosmochimica Acta, 44: 415- 429.
  • 120. Wang, T-G. & Simoneit, B. R. T., 1990. Organic geochemistry and coal petrology of Tertiary brown coal in the Zhoujing mine, Baise Basin, South China: 2. Biomarker assemblage and significance. Fuel, 69: 12-20.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01a53a03-6643-4187-b87e-16a337842b79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.