PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elimination of Methyl Orange Dye with Three Dimensional Electro-Fenton and Sono-Electro-Fenton Systems Utilizing Copper Foam and Activated Carbon

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study deals with the elimination of methyl orange (MO) from an aqueous solution by utilizing the 3D electroFenton process in a batch reactor with an anode of porous graphite and a cathode of copper foam in the presence of granular activated carbon (GAC) as a third pole, besides, employing response surface methodology (RSM) in combination with Box-Behnk Design (BBD) for studying the effects of operational conditions, such as current density (3–8 mA/cm2 ), electrolysis time (10–20 min), and the amount of GAC (1–3 g) on the removal efficiency beside to their interaction. The model was veiled since the value of R2 was high (>0.98) and the current density had the greatest influence on the response. The best removal efficiency (MO Re%) at pH = 3 was 95.62% with an average energy consumption of 6.22 kWh/kg MO, which was achieved under maximal conditions of current density = 5.12 mA/cm2 , mass of GAC = 3 g, and time = 20 min with small amounts of Fe2+ (0.124 mM), and Na2 SO4 (0.02 M). Moreover, the present work investigated the effectiveness of 3D electro-Fenton assisted by ultrasound known as Sono-ElectroFenton (SEF), by following a new strategy based on applying the minimum circumstances of EF and comparing its results with that of SEF under the same conditions. MO Re% for EFmin was 49.24% while SEF was 50.51%, which is considered an exiguous improvement. However, using copper foam as a working electrode in the 3D EF system for the degradation of MO was an excellent choice. Furthermore, the suggested approach is characterized by simplicity, speed, and efficiency with a high percentage of pollutant removal, in addition to being eco-friendly.
Twórcy
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
  • 1. Najim, A.A., Mohammed, A.A. 2018. Biosorption of methylene blue from aqueous solution using mixed algae. Iraqi Journal of Chemical and Petroleum Engineering, 19(4), 1–11. https://doi.org/10.31699/IJCPE.2018.4.1
  • 2. Abbas, R.N., Abbas, A.S. 2022. Kinetics and energetic parameters study of phenol removal from aqueous solution by electro-Fenton advanced oxidation using modified electrodes with PbO2 and graphene. Iraqi Journal of Chemical and Petroleum Engineering, 23(2), 1–8. https://doi.org/10.31699/IJCPE.2022.2.1
  • 3. Abed, I.A., Waisi, B.I. 2024. Performance enhancement of polyethersulfone-based ultrafiltration membrane decorated by titanium dioxide nanoparticles for dye filtration. Ecological Engineering and Environmental Technology, 25(5), 265–273. https://doi.org/10.12912/27197050/186182
  • 4. Adachi, A., Ouadrhiri, F. El, Kara, M., El Manssouri, I., Assouguem, A., Almutairi, M.H., Bayram, R., Mohamed, H.R.H.H., Peluso, I., Eloutassi, N., Lahkimi, A., El Ouadrhiri, F., Kara, M., El Manssouri, I., Assouguem, A., Almutairi, M.H., Bayram, R., Mohamed, H.R.H.H., Peluso, I., Lahkimi, A. 2022. Decolorization and degradation of methyl orange azo dye in aqueous solution by the electro Fenton process: Application of optimization. Catalysts, 12(6), 665. https://doi.org/10.3390/catal12060665
  • 5. Al-Bayati, I.S., Mohammed, S.A.M., Al-Anssari, S. 2023. Recovery of methyl orange from aqueous solutions by bulk liquid membrane process facilitated with anionic carrier. 060010. https://doi.org/10.1063/5.0114631
  • 6. Babuponnusami, A., Muthukumar, K. 2014. A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557–572. https://doi.org/10.1016/j.jece.2013.10.011
  • 7. Benmessaoud, S., Anissi, J., Kara, M., Assouguem, A., AL-Huqail, A.A., Germoush, M.O., Ullah, R., Ercisli, S., Bahhou, J. 2022. Isolation and characterization of three new crude oil degrading yeast strains, Candida parapsilosis SK1, Rhodotorula mucilaginosa SK2 and SK3. Sustainability, 14(6), 3465. https://doi.org/10.3390/su14063465
  • 8. Beqqal, N., Yahya, M.S., EL Karbane, M., Guessous, A., El Kacemi, K. 2017. Kinetic study of the degradation/mineralization of aqueous solutions contaminated with Rosuvastatin drug by ElectroFenton: Influence of experimental parameters. Journal of Materials and Environmental Sciences, 8(12), 4399–4407. https://doi.org/10.26872/jmes.2017.8.12.464
  • 9. Chakawa, S., Aziz, M. 2021. Investigating the result of current density, temperature, and electrolyte concentration on COD: Subtraction of petroleum refinery wastewater using response surface methodology. Water, 13(6), 835. https://doi.org/10.3390/w13060835
  • 10. Dao, K.C., Yang, C.-C., Chen, K.-F., Tsai, Y.-P. 2020. Recent trends in removal pharmaceuticals and personal care products by electrochemical oxidation and combined systems. Water, 12(4), 1043. https://doi.org/10.3390/w12041043
  • 11. Dargahi, A., Moradi, M., Marafat, R., Vosoughi, M., Mokhtari, S.A., Hasani, K., Asl, S.M. 2023. Applications of advanced oxidation processes (electroFenton and sono-electro-Fenton) for degradation of diazinon insecticide from aqueous solutions: optimization and modeling using RSM-CCD, influencing factors, evaluation of toxicity, and degradation pat. Biomass Conversion and Biorefinery, 13(12), 10615–10632. https://doi.org/10.1007/s13399-021-01753-x
  • 12. Demirel, C., Kabutey, A., Herák, D., Sedlaček, A., Mizera, Č., Dajbych, O. 2022. Using box–Behnken design coupled with response surface methodology for optimizing rapeseed oil expression parameters under heating and freezing conditions. Processes, 10(3), 490. https://doi.org/10.3390/pr10030490
  • 13. Eslami, A., Khavari Kashani, M.R., Khodadadi, A., Varank, G., Kadier, A., Ma, P.-C., Madihi-Bidgoli, S., Ghanbari, F. 2021. Sono-peroxi-coagulation (SPC) as an effective treatment for pulp and paper wastewater: Focus on pH effect, biodegradability, and toxicity. Journal of Water Process Engineering, 44, 102330. https://doi.org/10.1016/j.jwpe.2021.102330
  • 14. Fahem, A.S., Abbar, A.H. 2020. Treatment of petroleum refinery wastewater by electro-Fenton process using porous graphite electrodes. Egyptian Journal of Chemistry, 63(12), 4805–4819. https://doi.org/10.21608/EJCHEM.2020.28148.2592
  • 15. Ganzenko, O., Oturan, N., Sirés, I., Huguenot, D., van Hullebusch, E. D., Esposito, G., Oturan, M.A. 2018. Fast and complete removal of the 5-fluorouracil drug from water by electro-Fenton oxidation. Environmental Chemistry Letters, 16(1), 281–286. https://doi.org/10.1007/s10311-017-0659-6
  • 16. Ghanbari, F., Moradi, M. 2015. A comparative study of electrocoagulation, electrochemical Fenton, electro-Fenton and peroxi-coagulation for decolorization of real textile wastewater: Electrical energy consumption and biodegradability improvement. Journal of Environmental Chemical Engineering, 3(1), 499–506. https://doi.org/10.1016/j.jece.2014.12.018
  • 17. Ghjeer, A.Y., Abbar, A.H. 2023. A comparative study of four technologies (Fenton, Sono-Fenton (SF), Electro-Fenton (EF), and Sono-Electro-Fenton (SEF)) for hospital wastewater treatment. Case Studies in Chemical and Environmental Engineering, 8(August), 100519. https://doi.org/10.1016/j.cscee.2023.100519
  • 18. Giray, S.N., Aktas, D., Dolaz, M., Uysal, Y. 2014. Removal of dye from real textile wastewater by Sono-Electro-Fenton oxidation process. Journal of Selcuk University Natural and Applied Science, May, 90–97.
  • 19. Gökkuş, Ö., Yıldız, N., Koparal, A.S., Yıldız, Y.Ş. 2018. Evaluation of the effect of oxygen on electro-Fenton treatment performance for real textile wastewater using the Taguchi approach. International Journal of Environmental Science and Technology, 15(2), 449–460. https://doi.org/10.1007/s13762-017-1404-1
  • 20. Hameed, M.F., Mousa, K.M. 2019. Study on kinetic and optimization of continuous advanced oxidative decolorization of brilliant reactive red dye. Iraqi Journal of Chemical and Petroleum Engineering, 20(1), 9–14. https://doi.org/10.31699/IJCPE.2019.1.2
  • 21. Hasani, K., Peyghami, A., Moharrami, A., Vosoughi, M., Dargahi, A. 2020. The efficacy of sono-electroFenton process for removal of Cefixime antibiotic from aqueous solutions by response surface methodology (RSM) and evaluation of toxicity of effluent by microorganisms. Arabian Journal of Chemistry, 13(7), 6122–6139. https://doi.org/10.1016/j.arabjc.2020.05.012
  • 22. Hassan, A.K., Atiya, M.A., Mahmoud, Z.A. 2022. Photo-Fenton-like degradation of direct blue 15 using fixed bed reactor containing bimetallic nanoparticles: Effects and Box–Behnken optimization. Environmental Technology & Innovation, 28, 102907. https://doi.org/10.1016/j.eti.2022.102907
  • 23. He, H., Zhou, Z. 2017. Electro-Fenton process for water and wastewater treatment. Critical Reviews in Environmental Science and Technology, 47(21), 2100–2131. https://doi.org/10.1080/106 43389.2017.1405673
  • 24. He, W., Yan, X., Ma, H., Yu, J., Wang, J., Huang, X. 2013. Degradation of methyl orange by electro-Fenton-like process in the presence of chloride ion. Desalination and Water Treatment, 51(34–36), 6562–6571. https://doi.org/10.1080/19443994.2013.792133
  • 25. Igwegbe, C.A., Onukwuli, O.D., Ighalo, J.O., Umembamalu, C.J. 2021. Electrocoagulationflocculation of aquaculture effluent using hybrid iron and aluminium electrodes: A comparative study. Chemical Engineering Journal Advances, 6, 100107. https://doi.org/10.1016/j.ceja.2021.100107
  • 26. Jasim, R.A., Salman, R.H. 2024a. Congo red removal from aqueous solution by electrocoagulationelectro-oxidation combined system with Al and Cu–Mn–Ni nano composite as efficient electrodes. Case Studies in Chemical and Environmental Engineering, 9(March). https://doi.org/10.1016/j.cscee.2024.100747
  • 27. Jasim, R.A., Salman, R.H. 2024b. Use of nano Co-Ni-Mn composite and aluminum for removal of artificial anionic dye congo red by combined system. Ecological Engineering & Environmental Technology, 25(7), 133–149. https://doi.org/10.12912/27197050/188266
  • 28. Jiad, M.M., Abbar, A.H. 2023. Treatment of petroleum refinery wastewater by electrofenton process using a low cost porous graphite air-diffusion cathode with a novel design. Chemical Engineering Research and Design, 193, 207–221. https://doi.org/10.1016/j.cherd.2023.03.021
  • 29. Ma, B., Lv, W., Li, J., Yang, C., Tang, Q., Wang, D. 2021. Promotion removal of aniline with electroFenton processes utilizing carbon nanotube 3D morphology modification of an Ag-loaded copper foam cathode. Journal of Water Process Engineering, 43, 102295. https://doi.org/10.1016/j.jwpe.2021.102295
  • 30. Maamar, K., Fares, C., Sameut Bouhaik, I., Mahmoudi, L., Muthanna, B.G.N., Douani, M. 2023. Response surface methodology applied to ElectroFenton process for degradation of red bemacid as textile dye model. Cellulose Chemistry And Technology, 57(7–8), 891–901. https://doi.org/10.35812/CelluloseChemTechnol.2023.57.78
  • 31. Mohammed, M.A., Al-Bayati, I.S., Alobaidy, A.A., Waisi, B.I., Majeed, N. 2023. Investigation the efficiency of emulsion liquid membrane process for malachite green dye separation from water. Desalination and Water Treatment, 307(November), 190–195. https://doi.org/10.5004/dwt.2023.29903
  • 32. Mohammed, N.A., Alwared, A.I., Salman, M.S. 2020. Photocatalytic degradation of reactive yellow dye in wastewater using H2O2/TiO2/UV technique. Iraqi Journal of Chemical and Petroleum Engineering, 21(1), 15–21. https://doi.org/10.31699/IJCPE.2020.1.3
  • 33. Norra, G.-F., Radjenovic, J. 2021. Removal of persistent organic contaminants from wastewater using a hybrid electrochemical-granular activated carbon (GAC) system. Journal of Hazardous Materials, 415, 125557. https://doi.org/10.1016/j.jhazmat.2021.125557
  • 34. Oturan, M.A., Sirés, I., Oturan, N., Pérocheau, S., Laborde, J.L., Trévin, S. 2008. Sonoelectro-Fenton process: A novel hybrid technique for the destruction of organic pollutants in water. Journal of Electroanalytical Chemistry, 624(1–2), 329–332. https://doi.org/10.1016/j.jelechem.2008.08.005
  • 35. Özyurt, B., Camcıoğlu, Ş., Hapoglu, H. 2017. A consecutive electrocoagulation and electro-oxidation treatment for pulp and paper mill wastewater. Desalination and Water Treatment, 93, 214–228. https://doi.org/10.5004/dwt.2017.21257
  • 36. Rivera, F.L., Menendez, N., Mazarío, E., Herrasti, P. 2022. Electrofenton with reticular vitreous carbon and iron oxide nanoparticles for dye removal: A preliminary study. Applied Sciences, 12(16), 8293. https://doi.org/10.3390/app12168293
  • 37. Roddaeng, S., Promvonge, P., Anuwattana, R. 2018. Behaviors of hydrogen sulfide removal using granular activated carbon and modified granular activated carbon. MATEC Web of Conferences, 192, 03037. https://doi.org/10.1051/matecconf/201819203037
  • 38. Şahinkaya, S. 2013. COD and color removal from synthetic textile wastewater by ultrasound assisted electro-Fenton oxidation process. Journal of Industrial and Engineering Chemistry, 19(2), 601–605. https://doi.org/10.1016/j.jiec.2012.09.023
  • 39. Sala, M., Gutiérrez-Bouzán, M.C. 2014. Electrochemical treatment of industrial wastewater and effluent reuse at laboratory and semi-industrial scale. Journal of Cleaner Production, 65, 458–464. https://doi.org/10.1016/j.jclepro.2013.08.006
  • 40. Staddon, C. 2016. Managing Europe’s water resources. Routledge. https://doi.org/10.4324/9781315593548
  • 41. Suhan, M.B.K., Shuchi, S.B., Anis, A., Haque, Z., Islam, M.S. 2020. Comparative degradation study of remazol black B dye using electro-coagulation and electro-Fenton process: Kinetics and cost analysis. Environmental Nanotechnology, Monitoring & Management, 14, 100335. https://doi.org/10.1016/j.enmm.2020.100335
  • 42. Sun, Y., Li, P., Zheng, H., Zhao, C., Xiao, X., Xu, Y., Sun, W., Wu, H., Ren, M. 2017. Electrochemical treatment of chloramphenicol using Ti-Sn/γ-Al 2 O 3 particle electrodes with a three-dimensional reactor. Chemical Engineering Journal, 308, 1233–1242. https://doi.org/10.1016/j.cej.2016.10.072
  • 43. Teimouri, M., Khorsandi, H., Aghapour, A.A., Jafari, S.J. 2018. Degradation and mineralization of malachite green dye in aqueous solution by ElectroFenton process using iron electrodes. International Journal of Health and Life Sciences, 4(1). https://doi.org/10.5812/ijhls.79605
  • 44. Tetteh, E.K., Obotey Ezugbe, E., Rathilal, S., AsanteSackey, D. 2020. Removal of COD and SO42− from oil refinery wastewater using a photo-catalytic system—Comparing TiO2 and zeolite efficiencies. Water, 12(1), 214. https://doi.org/10.3390/w12010214
  • 45. Thwaini, H.H., Salman, R.H. 2023. Modification of Electro-Fenton Process with granular activated carbon for phenol degradation – Optimization by response surface methodology. Journal of Ecological Engineering, 24(9), 92–104. https://doi.org/10.12911/22998993/168411
  • 46. Trucillo, P., Lancia, A., Di Natale, F. 2023. Adsorption–Desorption process to separate dyes from tanning wastewaters. Processes, 11(10), 3006. https://doi.org/10.3390/pr11103006
  • 47. Vainoris, M., Nicolenco, A., Tsyntsaru, N., PodlahaMurphy, E., Alcaide, F., Cesiulis, H. 2022. Electrodeposited Fe on Cu foam as advanced fenton reagent for catalytic mineralization of methyl orange. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.977980
  • 48. Wan, W., Zhang, Y., Ji, R., Wang, B., He, F. 2017. Metal foam-based Fenton-like process by aeration. ACS Omega, 2(9), 6104–6111. https://doi.org/10.1021/acsomega.7b00977
  • 49. Yan, L., Wang, Y., Li, J., Shen, H., Zhang, C., Qu, T. 2016. Reduction of chemical oxygen demand from refinery wastewater by three-dimensional electrode-electro-fenton process. Bulletin of the Chemical Society of Japan, 89(1), 50–57. https://doi.org/10.1246/bcsj.20150250
  • 50. Yang, B., Tang, J. 2018. Electrochemical oxidation treatment of wastewater using activated carbon electrode. International Journal of Electrochemical Science, 13(1), 1096–1104. https://doi.org/10.20964/2018.01.78
  • 51. Yerima, E.A., Ogwuche, E., Ndubueze, C.I., Muhammed, K.A., Habila, J.D. 2024. Photocatalytic degradation of acid blue 25 dye in wastewater by zinc oxide nanoparticles. Trends in Ecological and Indoor Environmental Engineering, 2(1), 50–55. https://doi.org/10.62622/TEIEE.024.2.1.50-55
  • 52. Zhang, M., Dong, H., Zhao, L., Wang, D., Meng, D. 2019. A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of The Total Environment, 670, 110–121. https://doi.org/10.1016/j.scitotenv.2019.03.180
  • 53. Zhang, Y., Chen, Z., Wu, P., Duan, Y., Zhou, L., Lai, Y., Wang, F., Li, S. 2020. Three-dimensional heterogeneous Electro-Fenton system with a novel catalytic particle electrode for Bisphenol A removal. Journal of Hazardous Materials, 393, 120448. https://doi.org/10.1016/j.jhazmat.2019.03.067
  • 54. Zheng, Y., Qiu, S., Deng, F., Zhu, Y., Li, G., Ma, F. 2019. Three-dimensional electro-Fenton system with iron foam as particle electrode for folic acid wastewater pretreatment. Separation and Purification Technology, 224, 463–474. https://doi.org/10.1016/j.seppur.2019.05.054
  • 55. Zhu, Y., Qiu, S., Deng, F., Ma, F., Li, G., Zheng, Y. 2020. Three-dimensional nickel foam electrode for efficient electro-Fenton in a novel reactor. Environmental Technology, 41(6), 730–740. https://doi.org/10.1080/09593330.2018.1509890
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01a410c9-9a1c-4562-869a-f83f7480a45f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.