Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Hybrydowe podejście do efektywnego energetycznie tworzenia klastrów dla heterogenicznej sieci czujników bezprzewodowych z wykorzystaniem optymalizacji opartej na biogeografii i k-średnich
Języki publikacji
Abstrakty
The paper presents the proposed protocol a hybrid approach is applied for clustering of sensor networks combining BBO and K-means algorithm. The performance of the protocol is compared with SEP, IHCR and ERP in terms of stability period, network life time, residual energy and throughput. The simulation results show that the proposed protocol named as KBBO has improved the performance of these parameters significantly.
W pracy przedstawiono protokół, w którym stosuje się podejście hybrydowe do grupowania sieci czujników łączących algorytm BBO i K-średnich. Jego wydajność jest porównywana z SEP, IHCR i ERP pod względem okresu stabilności, żywotności sieci, energii resztkowej I przepustowości. Wyniki symulacji pokazują, że prezentowany protokół nazwany KBBO znacznie poprawił wydajność tych parametrów.
Wydawca
Czasopismo
Rocznik
Tom
Strony
138--141
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
autor
- School of Computer and Information Science, Indira Gandhi National Open University, New Delhi, India
autor
- Institute of Computer System, Odesa National Polytechnic University, Shevchenko avenue, 1, Odessa, 65044, Ukraine
autor
- Institute of Computer System, Odesa National Polytechnic University, Shevchenko avenue, 1, Odessa, 65044, Ukraine
autor
- Kherson Academy of Life-Long Education
autor
- Lublin University of Technology, Institute of Electronics and Information Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
autor
- Institute Information and Computational Technologies CS MES RK
autor
- Astana Medical University, Kazakhstan
Bibliografia
- [1] Yick J., Biswanath M., Dipak G., Wireless sensor network survey, Computer networks 52 (2008), No. 12, 2292-2330
- [2] Akyildiz I.F., et al., A survey on sensor networks, IEEE Communications magazine 40 (2002), No. 8, 102-114
- [3] Liu X. A survey on clustering routing protocols in wireless sensor networks, Sensors 12 (2012), No. 8, 11113-11153
- [4] Katiyar V, Narottam C., Surender S., Clustering algorithms for heterogeneous wireless sensor network: Asurvey, International Journal of Applied Engineering Research 1 (2010), No. 2, 273
- [5] Heinzelman W.B., Chandrakasan A.P., Balakrishnan H., An application-specific protocol architecture for wireless microsensor networks, IEEE Transactions on wireless communications 1 (2002), No. 4, 660-70
- [6] Georgios S., Matta I., Bestavros A., SEP: A stable election protocol for clustered heterogeneous wireless sensor networks, Boston University Computer Science Department, 2004
- [7] Ossama Y., Fahmy S., HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks, IEEE Transactions on mobile computing, 3 (2004), No. 4, 366-379
- [8] Lindsey S., Cauligi S.R., PEGASIS: Power-efficient gathering in sensor information systems, Aerospace conference proceedings 2002 IEEE, 3 (2002)
- [9] Michalewicz Z. Genetic algorithms + data structures = evolution programs, Springer, (2009)
- [10] Kennedy J., Particle swarm optimization, Encyclopedia of machine learning Springer , (2011), 760-766
- [11] Simon D., Biogeography-based optimization, IEEE transactions on evolutionary computation, 12 (2008), No. 6, 702-713
- [12] Matin A.W., Sajid H., Intelligent hierarchical cluster-based routing, Life, 7 (2006), 8
- [13] Attea B.A., Khalil E.A., A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks, Applied Soft Computing 12 (2012), No. 7,1950-1957
- [14] Basagni S. et al., A generalized clustering algorithm for peer-topeer networks, Workshop on Algorithmic Aspects of Communication, (1997)
- [15] Ma H. et al., Biogeography – Based Optimization: A 10 year Review, IEEE transaction on emerging topics in computational intelligence,9 (2017), No.5
- [16] Han J., Kamber M., Data Mining: Concepts and Techniques, Morgan Kaufman Publishers, 2 (2006)
- [17] Krak Yu.V., Barmak A.V., Baraban E.M., Usage of NURBSapproximation for construction of spatial model of human face, Journal of Automation and Information Sciences, 43 (2011), No. 2, 71-81
- [18] Kirichenko, M.F., Krak, Yu.V., Polishchuk, A.A. Pseudo inverse and projective matrices in problems of synthesis of functional transformers, Kibernetika i Sistemnyj Analiz, 40 (2004), No. 3, 116-129
- [19] Krak Yu.V., Dynamics of manipulation robots: Numericalanalytical method of formation and investigation of computational complexity, Journal of Automation and Information Sciences, 31 (1999), No. 1-3, 121-128
- [20] Wójcik W., Kotyra A., Golec T. et al., Vision based monitoring of coal flames, Przegląd Elektrotechniczny, 87 (2008), n.3, 241- 243
- [21] Vassilenko, Valtchev S., Teixeira J.P., Pavlov S., Energy harvesting: an interesting topic for education programs in engineering specialities, Internet, Education, Science, (2016) 149-156
- [22] Kuila P., Suneet K.G., Prasanta K.J., A novel evolutionary approach for load balanced clustering problem for wireless sensor networks, Swarm and Evolutionary Computation, 12 (2013), 48-56
- [23] Kuila P., Prasanta K. J. Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach, Engineering Applications of Artificial Intelligence, 33 (2014), 127-140
- [24] Al-Maitah M., Timchenko L.I., Kokriatskaia N.I. et al., Parallelhierarchical network as the model of neurocomputing, Proceedings of SPIE 10808, (2018)
- [25] Pal R., Himashu Mittal A.P., Mukesh S., BEECP: Biogeography optimization-based energy efficient clustering protocol for HWSNs, Contemporary Computing (IC3), (2016)
- [26] Lalwani P., Haider B., Chiranjeev K., BERA: a biogeographybased energy saving routing architecture for wireless sensor networks, Soft Computing, (2016), 1-17
- [27] Vyatkin S.I., Romanyuk S.A., Pavlov S.V., et al., Using lights in a volume-oriented rendering", Proc. SPIE 10445, (2017)
- [28] Vyatkin S.I., Romanyuk A.N., Gotra Z.Y, et al., Offsetting, relations, and blending with perturbation functions, Proc. SPIE 10445, (2017)
- [29] Vyatkin, S.I., Romanyuk, A.N., Pavlov, S.V., et al., Fast ray casting of function-based surfaces, Przegląd Elektrotechniczny, 93 (2017), No. 5, 83 – 86.
- [30] Timchenko L.I., Pavlov S.V., Kokryatskaya N.I., et al., Bioinspired approach to multistage image processing, Proc. SPIE 10445, (2017)
- [31] Mosorov V., Panskyi T., Biedron S., Testing for revealing of data structure based on the hybrid approach, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOŚ, 7 (2017), No. 2, 119-122
- [32] Romanyuk O.N., Pavlov S.V., Melnyk O.V., Romanyuk S.O., Smolarz A., et al., Method of anti-aliasing with the use of the new pixel model, Proc. SPIE 9816, (2015)
- [33] Romanyuk S.O., Pavlov S.V., Melnyk O.V., New method to control color intensity for antialiasing, Control and Communications (SIBCON), (2015)
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-019a38c3-b6b6-4832-be0c-b6867d834974