PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-invasive method for blood glucose monitoring using ECG signal

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Tight glucose monitoring is crucial for diabetic patients by using a Continuous Glucose Monitor (CGM). The existing CGMs measure the Blood Glucose Concentration (BGC) from the interstitial fluid. These technologies are quite expensive, and most of them are invasive. Previous studies have demonstrated that hypoglycemia and hyperglycemia episodes affect the electrophysiology of the heart. However, they did not determine a cohort relationship between BGC and ECG parameters. Material and method: In this work, we propose a new method for determining the BGC using surface ECG signals. Recurrent Convolutional Neural Networks (RCNN) were applied to segment the ECG signals. Then, the extracted features were employed to determine the BGC using two mathematical equations. This method has been tested on 04 patients over multiple days from the D1namo dataset, using surface ECG signals instead of intracardiac signal. Results: We were able to segment the ECG signals with an accuracy of 94% using the RCNN algorithm. According to the results, the proposed method was able to estimate the BGC with a Mean Absolute Error (MAE) of 0.0539, and a Mean Squared Error (MSE) of 0.1604. In addition, the linear relationship between BGC and ECG features has been confirmed in this paper. Conclusion: In this paper, we propose the potential use of ECG features to determine the BGC. Additionally, we confirmed the linear relationship between BGC and ECG features. That fact will open new perspectives for further research, namely physiological models. Furthermore, the findings point to the possible application of ECG wearable devices for non-invasive continuous blood glucose monitoring via machine learning.
Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Biomedical Engineering Laboratory, University of Tlemcen, Algeria
  • Biomedical Engineering Laboratory, University of Tlemcen, Algeria
  • Centre for the Development of Advanced Technologies (CDTA) at Setif, University of Setif1, Algeria
Bibliografia
  • 1. L’Atlas du diabète de la FID; 9ème Édition 2019. Federation internationale du diabete, 2019. https://www.diabete.qc.ca/fr/comprendre-le-diabete/ressources/documents-utiles/atlas/
  • 2. Près de 9 millions d’Algériens diabétiques d’ici à 20 ans. https://www.algerie360.com/pres-de-9-millions-dalgeriens-diabetiques-dici-a-20-ans/ (acceding 10/12/2020)
  • 3. The Diabetes Control Complications Trial/Epidemiology of Diabetes Interventions and Complications DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Eng J Med. 2005;353(25):2643-2653. https://doi.org/10.1056/nejmoa052187
  • 4. Freeman R. Hypoglycemia and the Autonomic Nervous System. In: Veves, A., Malik, R.A. (eds) Diabetic Neuropathy. Clinical Diabetes. Humana Press; 2007. https://doi.org/10.1007/978-1-59745-311-0_23
  • 5. Chen C, Zhao XL, Li ZH, et al. Current and Emerging Technology for Continuous Glucose Monitoring. Sensors. 2017;17(1):182. https://doi.org/10.3390/s17010182
  • 6. Wagner J, Malchof C, Abbott G. Invasiveness as a barrier to self-monitoring of blood glucose in diabetes. Diabetes Technol Ther. 2005;(4):612-619. https://doi.org/10.1089/dia.2005.7.612
  • 7. Allen N, Gupta A. Current Diabetes Technology: Striving for the Artificial Pancreas. Diagnostics. 2019;9(1):31. https://doi.org/10.3390/diagnostics9010031
  • 8. Ajjan RA, Cummings MH, Jennings P, et al. Accuracy of flash glucose monitoring and continuous glucose monitoring technologies: Implications for clinical practice. Diab Vasc Dis Res. 2018;15(3):175-184. https://doi.org/10.1177/1479164118756240
  • 9. Fokkert M J, van Dijk PR, Edens MA, et al. Performance of the FreeStyle Libre Flash glucose monitoring system in patients with type 1 and 2 diabetes mellitus. BMJ Open Diabetes Res Care. 2017;5(1):e000320. https://doi.org/10.1136/bmjdrc-2016-000320
  • 10. Villena Gonzales W, Mobashsher A, Abbosh A. The Progress of Glucose Monitoring—A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. Sensors. 2019;19(4):800. https://doi.org/10.3390/s19040800
  • 11. Vigersky RA. The benefits, limitations, and cost-effectiveness of advanced technologies in the management of patients with diabetes mellitus. J Diabetes Sci Technol. 2015;9(2):320-330. https://doi.org/10.1177/1932296814565661
  • 12. Lee I, Probst D, Klonoff D, Sode K. Continuous glucose monitoring systems - Current status and future perspectives of the flagship technologies in biosensor research. Biosens Bioelectron. 2012;181:113054. https://doi.org/10.1016/j.bios.2021.113054
  • 13. Xue Y, Thalmayer AS, Zeising S, et al. Commercial and Scientific Solutions for Blood Glucose Monitoring—A Review. Sensors. 2022;22:425. https://doi.org/10.3390/s22020425
  • 14. Pirnstill CW, Malik BH, Gresham VC, Coté GL. In Vivo Glucose Monitoring Using Dual-Wavelength Polarimetry to Overcome Corneal Birefringence in the Presence of Motion. Diabetes Technol Ther. 2012;14(9):819‑827. https://doi.org/10.1089/dia.2012.0070
  • 15. Chen L, Hwang E, Zhang J. Fluorescent Nanobiosensors for Sensing Glucose. Sensors. 2018;18(5):1440. https://doi.org/10.3390/s18051440
  • 16. Li N, Zang H, Sun H, et al. A Noninvasive Accurate Measurement of Blood Glucose Levels with Raman Spectroscopy of Blood in Microvessels. Molecules. 2019;24(8):1500. https://doi.org/10.3390/molecules24081500
  • 17. Howsmon D, Bequette BW. Hypo- and Hyperglycemic Alarms: Devices and Algorithms. J Diabetes Sci Technol. 2015;30;9(5):1126-37. https://doi.org/10.1177/1932296815583507
  • 18. Ngo CO, Chai R, Nguyen TV, et al. Nocturnal Hypoglycemia Detection using EEG Spectral Moments under Natural Occurrence Conditions. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019, pp. 7177-7180. https://doi.org/10.1109/EMBC.2019.8856695
  • 19. Rubega M, Scarpa F, Teodori D, et al. Detection of Hypoglycemia Using Measures of EEG Complexity in Type 1 Diabetes Patients. Entropy. 2020;22:81. https://doi.org/10.3390/e22010081
  • 20. Blaabjerg L, Remvig LSR, Nielsen SS, et al. Prevention of Severe Hypoglycemia by Use of The Electroencephalography (EEG) Based Alarm Device, Hyposafe SUBQ. Diabetes Technology & Therapeutics. 2019;21(Suppl1);A146
  • 21. Hobbs N, Hajizadeh I, Rashid M, et al. Improving Glucose Prediction Accuracy in Physically Active Adolescents With Type 1 Diabetes. J Diabetes Sci Technol. 2019;13(4):718-727. https://doi.org/10.1177/1932296818820550
  • 22. Jacobs PG, Resalat N, El Youssef J, et al. Incorporating an Exercise Detection, Grading, and Hormone Dosing Algorithm Into the Artificial Pancreas Using Accelerometry and Heart Rate. J Diabetes Sci Technol. 2015;9(6):1175-1184. https://doi.org/10.1177/1932296815609371
  • 23. Resalat N, Hilts W, Youssef JE, et al. Adaptive Control of an Artificial Pancreas Using Model Identification, Adaptive Postprandial Insulin Delivery, and Heart Rate and Accelerometry as Control Inputs. Journal of Diabetes Science and Technology. 2019;13(6):1044-1053. https://doi.org/10.1177/1932296819881467
  • 24. Turksoy K, Monforti C, Park M, et al. Use of wearable sensors and biometric variables in an artificial pancreas system. Sensors. 2017;17(3):E532. https://doi.org/10.3390/s17030532
  • 25. Johansen K, Ellegaard S, Wex S. Detection of nocturnal hypoglycemia in insulin‐treated diabetics by a skin temperature ‐ skin conductance meter. Acta Medica Scand. 1986;220(3):213‐217. https://doi.org/10.1111/j.0954-6820.1986.tb02753.x
  • 26. Tronstad C, Elvebakk O, Staal OM, et al. Non‐invasive prediction of blood glucose trends during hypoglycemia. Anal Chim Acta. 2019;1052:37‐48. https://doi.org/10.1016/j.aca.2018.12.009
  • 27. Turksoy K, Bayrak ES, Quinn L, et al. Multivariable Adaptive Closed-Loop Control of an Artificial Pancreas without Meal and Activity Announcement. Diabetes Technol Ther. 2013;15(5):386-400. https://doi.org/10.1089/dia.2012.0283
  • 28. Cordeiro R, Karimian N, Park Y. Hyperglycemia Identification Using ECG in Deep Learning Era. Sensors. 2021;21:6263. https://doi.org/10.3390/s21186263
  • 29. D’Imperio S, Monasky MM, Micaglio E, et al. Early Morning QT Prolongation During Hypoglycemia: Only a Matter of Glucose? Front Cardiovasc Med. 2021;8:688875. https://doi.org/10.3389/fcvm.2021.688875
  • 30. Gill GV, Woodward A, Casson IF, Weston PJ. Cardiac arrhythmia and nocturnal hypoglycaemia in type 1 diabetes—the ‘dead in bed’ syndrome revisited. Diabetologia. 2009;52(1):42‑45. https://doi.org/10.1007/s00125-008-1177-7
  • 31. Lee SP, Yeoh L, Harris ND, et al. Influence of autonomic neuropathy on QTc interval lengthening during hypoglycaemia in type 1 diabetes. Diabetes. 2004;53:1535-1542. https://doi.org/10.2337/diabetes.53.6.1535
  • 32. Murphy NP, Ford-Adams ME, Ong KK, et al. Prolonged cardiac repolarisation during spontaneous nocturnal hypoglycaemia in children and adolescents with type 1 diabetes. Diabetologia. 2004;47(11):1940-1947. https://doi.org/10.1007/s00125-004-1552-y
  • 33. Elvebakk O, Tronstad C, Birkeland KI, et al. A multiparameter model for non-invasive detection of hypoglycaemia. Physiol Meas. 2019;40(8):085004. https://doi.org/10.1088/1361-6579/ab3676
  • 34. Lipponen JA, Kemppainen J, Karjalainen PA, et al. Hypoglycemia detection based on cardiac repolarization features. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA. pp. 4697-4700
  • 35. Laitinen T, Lyyra-Laitinen T, Huopio H, et al. Electrocardiographic Alterations during Hyperinsulinemic Hypoglycemia in Healthy Subjects: ECG Changes during Hypoglycemia. Ann Noninvasive Electrocardiol. 2008;13(2):97-105. https://doi.org/10.1111/j.1542-474X.2008.00208.x
  • 36. Porumb M, Stranges S, Pescapè A, Pecchia L. Precision Medicine and Artificial Intelligence: A Pilot Study on Deep Learning for Hypoglycemic Events Detection based on ECG. Sci Rep. 2020;10(1):170. https://doi.org/10.1038/s41598-019-56927-5
  • 37. Nuryani N, Ling SSH, Nguyen HT. Electrocardiographic Signals and Swarm-Based Support Vector Machine for Hypoglycemia Detection. Ann Biomed Eng. 2021;40:934‑945. https://doi.org/10.1007/s10439-011-0446-7
  • 38. Tobore, Li J, Kandwal A, et al. Statistical and spectral analysis of ECG signal towards achieving non-invasive blood glucose monitoring. BMC Med Inform Decis Mak. 2019;19(S6):266. https://doi.org/10.1186/s12911-019-0959-9
  • 39. Lipponen JA, Tarvainen MP, Laitinen T, et al. A Principal Component Regression Approach for Estimation of Ventricular Repolarization Characteristics. IEEE Trans Biomed Eng. 2010;57:1062-1069. https://doi.org/10.1109/TBME.2009.2037492
  • 40. Ling SH, Nguyen HT. Natural occurrence of nocturnal hypoglycemia detection using hybrid particle swarm optimized fuzzy reasoning model. Artif Intell Med. 2012;55(3):177-184. https://doi.org/10.1016/j.artmed.2012.04.003
  • 41. Ling SH, San PP, Lam HK, Nguyen HT. Noninvasive detection of hypoglycemic episodes in Type 1 diabetes using intelligent hybrid rough neural system. In: 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 2014. Pp. 1238-1242. https://doi.org/10.1109/CEC.2014.6900229
  • 42. Ling SSH, Nguyen HT. Genetic-Algorithm-Based Multiple Regression With Fuzzy Inference System for Detection of Nocturnal Hypoglycemic. IEEE Trans Inf Technol Biomed. 2011;15(2):308-315. https://doi.org/10.1109/TITB.2010.2103953
  • 43. Arbi KF, Soulimane S, Saffih F. IoT technologies combining glucose control with physiological signal: comparative study. In: 2020 International Conference on Electrical Engineering (ICEE), Istanbul, Turkey. pp. 1-6. https://doi.org/10.1109/ICEE49691.2020.9249843
  • 44. Bayoumy K, Gaber M, Elshafeey A, et al. Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat Rev Cardiol. 2021;18:581-599. https://doi.org/10.1038/s41569-021-00522-7
  • 45. mathworks/physionet_ECG_segmentation: https://github.com/mathworks/physionet_ECG_segmentation (Accessed 30/10/2020)
  • 46. Dubosson F, Ranvier JE, Bromuri S, et al. The open D1NAMO dataset: A multi-modal dataset for research on non-invasive type 1 diabetes management. Inform Med Unlocked. 2018;13:92-100. https://doi.org/10.1016/j.imu.2018.09.003
  • 47. Kroll MW, inventor. System and method for monitoring blood glucose levels using an implantable medical device. U.S. Patent US-20060100494-A1. May 11, 2006
  • 48. Kroll MW, inventor. System and method for monitoring blood glucose levels using an implantable medical device. U.S. Patent US-7680529-B2. March 16, 2010
  • 49. Zanon F, Marcantoni L, Pastore G, et al. Basic Properties And Clinical Applications Of The Intracardiac ECG. J Atr Fibrillation. 2016;31;9(4):1444. https://doi.org/10.4022/jafib.1444
  • 50. Venkatachalam KL, Herbrandson JE, Asirvatham SJ. Signals and signal processing for the electrophysiologist: part I: electrogram acquisition. Circ Arrhythm Electrophysiol. 2011;4(6):965-973. https://doi.org/10.1161/CIRCEP.111.964304
  • 51. Bayés De Luna A, Batchvarov VN, Malik M. Chapter 1: the morphology of the electrocardiogram. In: A.J. Camm (Ed.), The ESC Textbook of Cardiovascular Medicine, Blackwell Publishing (2006), pp. 1-35
  • 52. Holt RIG, DeVries JH, Hess-Fischl A, et al. The Management of Type 1 Diabetes in Adults. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2021;44(11):2589-2625. https://doi.org/10.2337/dci21-0043
  • 53. Merl V, Kern W, Peters A, et al. Differences between nighttime and daytime hypoglycemia counterregulation in healthy humans. Metabolism. 2004;53(7):894-8. https://doi.org/10.1016/j.metabol.2004.02.010
  • 54. Simonson E, McKinlay CA. The meal test in clinical electrocardiography. Circulation. 1950;1:1006-1016. https://doi.org/10.1161/01.CIR.1.4.1006
  • 55. Chapter 23 - T Wave Abnormalities. Editor(s): Borys Surawicz, Timothy K. Knilans. Chou's Electrocardiography in Clinical Practice (Sixth Edition). W.B. Saunders, 2008. pp. 555-568. https://doi.org/10.1016/B978-141603774-3.10023-1
  • 56. Kitchin AH, Neilson JM. The T wave of the electrocardiogram during and after exercise in normal subjects. Cardiovascular Research. 1972;6(2):143-149. https://doi.org/10.1093/cvr/6.2.143
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-018ff8fd-491f-41a6-8abb-27fd891e2669
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.