PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and characterization of Co2FeAl Heusler alloy nanoparticles

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heusler alloy Co2FeAl (CFA) nanoparticles have been synthesized by reducing a mixture of the precursors: CoCl2_6H2O, Fe(NO3)3_9H2O and AlCl3_6H2O under H2 atmosphere. XRD, SEM and TEM techniques have been used for the characterization of the prepared material. XRD and SAED data from TEM show the formation of mixed phases of L21, B2 and A2 type crystal structure of the alloy. The estimated particle size from XRD data and TEM micrograph has been found in the range of 10 nm to 50 nm. The saturation magnetization has been found of 115 emu/g from M-H characteristics which is close to its bulk value of saturation magnetization. Chemical composition of the elements has also been estimated from EDAX, which shows a ratio of Co:Fe:Al as 2.12:1.06:0.81.
Słowa kluczowe
Wydawca
Rocznik
Strony
501--505
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
autor
  • Department of Physics, Banaras Hindu University, Varanasi-221005 (U.P.), India
  • Department of Physics, Banaras Hindu University, Varanasi-221005 (U.P.), India
Bibliografia
  • [1] WU L., WU Y., WEI H., SHI Y., HU C., Mater. Lett., 58 (2004), 2700.
  • [2] RAHMAN I.A., PADAVETTAN V., Journal of Nanomaterials, 2012 (2012), 132424.
  • [3] JIANG Q., LANG X.Y., The Open Nanoscience Journal, 1 (2007), 32.
  • [4] NELSON J.A., BENNETT L.H., WAGNER M.J., J. Am. Chem. Soc., 124 (2002), 2979.
  • [5] ZHANG Z.D., IN: H.S. NALWA (ED.), Encyclopedia of Nanoscience and Nanotechnology, vol. 6, America Scientific Publishers, 2004, p. 77 – 160.
  • [6] MORALES A.M., LIEBER C.M., Science 279 (1998), 208.
  • [7] ZHU D., ZHU H., ZHANG Y.H., J. Phys.: Condens. Matter, 14 (2002), L519.
  • [8] WANG D., WEN S., CHEN J., ZHANG S., LI F., Phys. Rev. B, 49 (1994), 14282.
  • [9] WEI X.W. et al., J. Alloys Compd., 539 (2012), 21.
  • [10] SHIN S.J., KIM Y.H., KIM C.W., CHA H.G., KIM Y.J., KANG Y.S., Curr. Appl. Phys., 7 (4) (2007), 404.
  • [11] YANG Q. et al., Chem. Phys. Lett., 379 (2003), 87.
  • [12] DE GROOT R.A., MULLER F.M., VAN ENGEN P.G., BUSHOW K.H.J., Phys. Rev. Lett., 50 (1983), 2024.
  • [13] INOMATA K. et al., Sci. Technol. Adv. Mater., 9 (2008), 014101.
  • [14] GALANAKIS I., DEDERICHS P.H., PAPANIKOLAOU N., Phys. Rev. B, 66 (2002), 174429.
  • [15] FECHER G.H., KANDPAL H.C., WURMEHL S., FELSER C., SCHONHENSE G., J. Appl. Phys. 99 (2006), 08J106.
  • [16] ZHENG Z.G., ZHONG X.C., ZHANG Y.H., YU H.Y., ZENG D.C., J. Alloys Compd., 466 (2008), 377.
  • [17] GENNARI F.C., ESQUIVEL M.R., J. Alloys Compd., 459 (2008), 425.
  • [18] HATCHARD T.D., THRONE J.S., FARRELL S.P., DUNLAP R.A., J. Phys.: Condens. Matter, 20 (2008), 445205.
  • [19] VINESH A., BHARGAVA H., LAKSHMI N., VENUGOPALAN K., J. Appl. Phys., 105 (2009), 07A309.
  • [20] BAHRAMI H., KAMELI P., SALAMATI H., J. Magn. Magn. Mater., 321 (2009), 2533.
  • [21] MIKAMI M., MATSUMOTO A., KOBAYASHI K., J. Alloys Compd., 461 (2008), 423.
  • [22] SAPKOTA K.R., GYAWALI P., FORBES A., PEGG I.L., PHILIP J., J. Appl. Phys., 111 (2012), 123906.
  • [23] BASIT L. et al., J. Phys. D: Appl. Phys., 42 (2009), 084018.
  • [24] DU J.H., ZUO Y.L., WANG Z., MA J.H., XI L., J. Mater. Sci. Technol., 29 (2013), 245.
  • [25] TAKAMURA Y., NAKANE R., SUGAHARA S., J. Appl. Phys., 107 (2010), 09B111.
  • [26] EBERHART J.P., Analyse Structurale et Chimiques Des Materiaux (Paris; Ed. Dunod) 46 (1989), p. 407.
  • [27] JUNG D., KOO H.J., WHANGBO M.H., J. Mol. Struct., 527 (2000), 113.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01899a95-9b03-48e8-b7b1-7545e814418c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.