PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrophysical Properties of the Multicomponent PbFe1/2Nb1/2O3 Ceramics Doped by Li

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of research on the influence of sintering temperature on microstructure, DC electrical conductivity, dielectric, ferroelectric and magnetic properties of PbFe1/2Nb1/2O3 ceramics doped by Li in the amount of 5.0% wt., in the abbreviation PLiFN. The ceramic samples of the PLiFN material were obtained by the two-stage synthesis – columbite method and sintered by free sintering methods. Introduction to the basic PbFe1/2Nb1/2O3 composition of the lithium admixture to decrease the electrical conductivity and reduction of dielectric loss. The tests have shown that the increase in sintering temperature orders the PLiFN ceramic microstructure, which has a positive effect on its electrophysical properties. At room temperature, the PLiFN ceramic samples show both ferroelectric and ferromagnetic properties. Considering the functional parameters of the obtained ceramic samples, the optimal technological conditions are 1100°C/2 h.
Słowa kluczowe
Twórcy
autor
  • University of Silesia in Katowice, Faculty of Computer Science and Material Science, Institute of Technology and Mechatronics, 12, Żytnia Str., 41–200, Sosnowiec, Poland
autor
  • University of Silesia in Katowice, Faculty of Computer Science and Material Science, Institute of Technology and Mechatronics, 12, Żytnia Str., 41–200, Sosnowiec, Poland
autor
  • University of Silesia in Katowice, Faculty of Computer Science and Material Science, Institute of Technology and Mechatronics, 12, Żytnia Str., 41–200, Sosnowiec, Poland
autor
  • University of Silesia in Katowice, Faculty of Computer Science and Material Science, Institute of Material Science, 1a, 75 Pułku Piechoty Str., 41–500 Chorzów, Poland
Bibliografia
  • [1] H. Schmid, Ferroelectrics 162, 317 (1994).
  • [2] W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007).
  • [3] K. F. Wang, J.-M. Liu, Z. F. Ren, Adv. Phys. 58, 4, 321-448 (2009).
  • [4] D. Bochenek, J. Alloy. Compd. 504, 508-513 (2010).
  • [5] D. Bochenek, J. Dudek, Eur. Phys. J.-Spec. Top. 154, 19-22 (2008).
  • [6] G. A. Smolenskii, A. I. Agranovskaia, S. N. Popov, V. A. Isupov, Sov. Phys.-Tech. Phys. 3 1981 (1958).
  • [7] G. A. Smoleński, W. M. Judin., Fiz. Twierdogo Tela 6, 3668 (1964).
  • [8] Y. E. Roginskaya, Y. N. Venevcev, S. A. Fedulov, Sov. Phys. Crystallogr. 8, 490 (1964).
  • [9] S. Picozzi et al., J. Phys.-Condens. Matt. 20, 43, 434208 (2008).
  • [10] H. Schmid, J. Phys.-Condens. Matt 20, 43, 434201 (2008).
  • [11] W. Eerenstein, N. D. Mathur, J. F. Scott, Nature 442, 759 (2006).
  • [12] K. Wójcik, K. Zieleniec, M. Mulata, Ferroelectrics 289, 107 (2003).
  • [13] D. Bochenek, P. Kruk, R. Skulski, P. Wawrzała, J. Electroceram. 26, 8-13 (2011).
  • [14] D. Bochenek, Z. Surowiak, J. Krok-Kowalski, J. Poltierova-Vejpravova, J. Electroceram. 25, 122-129 (2010).
  • [15] D. Bochenek, G. Dercz, D. Oleszak, Arch. Metall. Mater. 56, 4, 1015-1020 (2011).
  • [16] D. Bochenek, Z. Surowiak, J. Alloy. Compd. 480, 732-736 (2009).
  • [17] Y. Xu, Ferroelectric materials and their applications, Elsevier, North-Holland, Amsterdam 1991.
  • [18] R. D. Shannon, Acta Cryst. A 32, 751-767 (1976).
  • [19] O. Raymond, R. Font, N. Juarez-Almodovar, J. Portelies, J.M. Siqueiros, J. Appl. Phys. 97, 084107, 1-8 (2005).
  • [20] M. Kuwabara, J. Am. Ceram. Soc. 73, 5, 1438-1439 (1990).
  • [21] L. B. Kong, J. Ma, Mater. Lett. 51, 95-100 (2001).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0187073d-7c27-41f2-96ba-5bbc28e061e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.