PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantitative characterization of unconventional (tight) hydrocarbon reservoir by integrating rock physics analysis and seismic inversion: a case study from the Lower Indus Basin of Pakistan

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper demonstrates a successful application of Bayesian classification method to accurately predict petrophysical properties and lithofacies classification in the deep unconventional (tight gas) hydrocarbon resource potential of early Cretaceous in the Lower Indus Basin of Pakistan. To explore the true potential for exploration and development phases, we quantitatively characterized the tight gas reservoir based on an integrated methodology using the Bayesian approach constraint with rock physics analysis which utilized deterministic petrophysical results from a well information to extract the desired lithofacies at seismic scale. The employed methodology relied on stepwise sequential integration of all available data through petrophysical, rock physics analysis and seismic inversion technique. Simultaneous inversion approach is used to invert elastic properties for reservoir interpretation. Seismic-based petrophysical properties are predicted using regression analysis by establishing a functional relationship between well logs for Sembar formation. The rock physics template (acoustic impedance versus Vs/ Vs ratio) model helped to differentiate lithological units of sand and shale in the well. Three lithofacies (HC sands, shale and shalier sand) are properly classified in rock physics template, and their probabilities are accurately defined using Bayes’ theorem. Finally, estimated lithofacies and hydrocarbon probability map from the Bayesian approach are meticulously validated from well data. The quantitative seismic reservoir characterization study provided important support for the unconventional prospect evaluation and hydrocarbon reserve estimations necessary to delineate unexplored parts which could prove helpful in effectively planning for the horizontal well placement and optimal reservoir development.
Czasopismo
Rocznik
Strony
2715--2731
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
autor
  • Pakistan Petroleum Limited (PPL), 3rd foor, PIDC House, Dr. Ziauddin Ahmed Road, Karachi, Pakistan
  • Pakistan Petroleum Limited (PPL), 3rd foor, PIDC House, Dr. Ziauddin Ahmed Road, Karachi, Pakistan
  • Pakistan Petroleum Limited (PPL), 3rd foor, PIDC House, Dr. Ziauddin Ahmed Road, Karachi, Pakistan
  • Pakistan Petroleum Limited (PPL), 3rd foor, PIDC House, Dr. Ziauddin Ahmed Road, Karachi, Pakistan
  • Pakistan Petroleum Limited (PPL), 3rd foor, PIDC House, Dr. Ziauddin Ahmed Road, Karachi, Pakistan
Bibliografia
  • 1. Abid M, Niu L, Ma J, Geng J (2021) Unconventional reservoir characterization and sensitive attributes determination: a case study of eastern sembar formation, lower indus basin Pakistan. Geophysics 86(1):B1–B14
  • 2. Abdolahi A, Chehrazi A, Kadkhodaie A, Babasafari AA (2022) Seismic inversion as a reliable technique to anticipating of porosity and facies delineation, a case study on Asmari Formation in Hendijan field, southwest part of Iran. J Pet Explor Prod Technol 13:1–4
  • 3. Ahmad N, Mateen J, Chaudry KS, Mehmood N, Arif F (2013) Shale gas potential of lower cretaceous sembar formation in middle and lower indus basin, Pakistan. Pakistan J Hydrocarb Res 23:51–62
  • 4. Ahmed N, Khalid P, Anwar AW (2016) Rock Physics modeling to assess the impact of spatial distribution pattern of pore fluid and clay contents on acoustic signatures of partially saturated reservoirs. Acta Geod Geophys 51:1–13
  • 5. Avseth P, Mukerji T, Mavko G (2005) Quantitative seismic interpretation. Cambridge University Press
  • 6. Aziz H, Ehsan M, Ali A, Khan HK, Khan A (2020) Hydrocarbon source rock evaluation and quantification of organic richness from correlation of well logs and geochemical data: a case study from the Sembar formation, Southern Indus Basin, Pakistan. J Natural Gas Sci Eng 81:103433
  • 7. Bachrach R (2006) Joint estimation of porosity and saturation using stochastic rock physics modeling. Geophysics 71:53–63
  • 8. Baig MO, Harris NB, Ahmed H, Baig MOA (2016) Controls on reservoir diagenesis in the lower goru sandstone formation, lower indus basin, Pakistan. J Pet Geol 39:29–48
  • 9. Bosch M, Mukerji T, Gonzalez EF (2010) Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review. Geophysics 75:A165–A176
  • 10. Cambois G (2001) AVO processing: Myths and reality. SEG Annual Meeting, OnePetro
  • 11. Dai J, Ni Y, Wu X (2012) Tight gas in china and its significance in exploration and exploitation. Pet Explor Dev 39:277–284
  • 12. Downton JE (2005) Seismic parameter estimation from AVO inversion, vol 10. University of Calgary, Department of Geology and Geophysics
  • 13. Duffaut K, Alsos T, Landro M, Rogno H, and Al-Najjar N, (2000), Shear wave elastic impedance, The Leading Edge: 1222–1229.
  • 14. Durrani MZA, Talib M, Sarosh B (2020a) Rock physics-driven quantitative seismic reservoir characterization of a tight gas reservoir: a case study from the lower indus Basin in Pakistan. First Break 38(11):43–53
  • 15. Durrani MZA, Talib M, Ali A, Sarosh B, Naseem N (2020b) Characterization and probabilistic estimation of tight carbonate reservoir properties using quantitative geophysical approach: a case study from a mature gas field in the middle indus basin of Pakistan. J Petrol Explor Prod Technol 10:2785–2804. https://doi.org/10.1007/s13202-020-00942-0
  • 16. Durrani MZA, Khan MR, Palekar A, and Sarosh B (2017), A pragmatic approach for prestack seismic data conditioning and quality inspection for quantitative seismic reservoir characterization. SEG Technical Program Expanded Abstracts: 488–492.
  • 17. Durrani MZA (2015) Quantitative seismic reservoir characterization of tight sands (granite wash) play at Stiles Ranch field in the Anadarko Basin. The University of Tulsa, Texas (USA)
  • 18. Dvorkin J, Nur A (1996) Elasticity of high-porosity sandstones: theory for two North Sea data sets. Geophysics 61:1363–1370
  • 19. Gardner GHF, Gardner LW, Gregory AR (1974) Formation velocity and density–the diagnostic basics for stratigraphic traps. Geophysics 39(6):770–780
  • 20. Gassmann F (1951) Elastic waves through a packing of spheres. Geophysics 16(4):673–685
  • 21. Gogoi T, Chatterjee R (2019) Estimation of petrophysical parameters using seismic inversion and neural network modeling in upper Assam Basin, India. Geosci Front 10:1113–1124
  • 22. Gong L, Zeng L, Gao Z, Zhu R, Zhang B (2015) Reservoir characterization and origin of tight gas sandstones in the upper triassic Xujiahe formation, Western Sichuan Basin, China. J Pet Explor Prod Technol 6:319–329
  • 23. Goodway B, Chen T and Downton J (1997), Improved AVO fluid detection and lithology discrimination using Lame petrophysical parameters; ‘λρ', ‘μρ', and ‘λ/μ’ fluid stack' from P and S inversions, 67th Annual International Meeting: Society of Exploration Geophysics: 183–186.
  • 24. Greenberg ML, Castagna JP (1992) Shear-wave velocity estimation in porous rocks: theoretical formulation, preliminary verification and applications1. Geophys Prospect 40(2):195–209
  • 25. Hampson DP, Russell BH, Bankhead B (2005) Simultaneous inversion of pre-stack seismic data. In: SEG technical program expanded abstracts. Society of Exploration Geophysicists, pp 1633–1637
  • 26. Hashin Z, Shtrikman S (1962) A variational approach to the elastic behavior of multiphase materials. J Mech Phys Solids 11:127–140
  • 27. Inichinbia S, Sule PO, Ahmed AL, Hamza H (2014) AVO inversion and lateral prediction of reservoir properties of Amangi hydrocarbon field of the Niger Delta area of Nigeria. J Appl Geol Geophys 2:8–17
  • 28. Iqbal MA & Shah SI (1980). A guide to the stratigraphy of Pakistan.
  • 29. Jiang ZX, Li Z, Li F, Pang XQ, Yang W, Liu LF, Jiang FJ (2015) Tight sandstone gas accumulation mechanism and development models. Pet Sci 12:587–605
  • 30. Jiang M, Spikes KT (2016) Rock-physics and seismic-inversion based reservoir characterization of the Haynesville Shale. J Geophys Eng 13(3):220–233
  • 31. Kari IB (1993). Cretaceous source rocks in Pakistan. AAPG bulletin (American association of petroleum geologists); (United States), 77(CONF-930306--).
  • 32. Khan N, Zhu P, Konaté AA (2021) Integrated geophysical study of Lower Indus basin at regional scale. Arab J Geosci 14:1214
  • 33. Khan M, Nawaz S, Shah M, Hasan M (2016) Interpreting seismic profiles in terms of structure and stratigraphy, an example from lower indus basin Pakistan. Univ J Geosci 4(3):62–71
  • 34. Kumar R, Das B, Chatterjee R, Sain K (2016) A methodology of porosity estimation from inversion of post-stack seismic data. J Natural Gas Sci Eng 28:356–364
  • 35. Latimer RB, Davison R, Van Riel P (2000) Interpreter’s guide to understanding and working with seismic derived acoustic impedance data. Lead Edge 19(3):242–256
  • 36. Liu D (2013) The effects of pre-stack seismic data conditioning on AVO analysis. SEG Annual Meeting, OnePetro
  • 37. Ma XQ (2002) Simultaneous inversion of prestack seismic data for rock properties using simulated annealing. Geophysics 67:1877–1885
  • 38. Mallick S (1995) Model-based inversion of amplitude-variations with offset data using a genetic algorithm. Geophysics 60:939–954
  • 39. Maurya SP, Singh NP, and Singh KH (2020), Seismic inversion methods: a practical approach. Springer 1st ed: 1.
  • 40. Naeem M, Jafri MK, Moustafa SSR, Al-Arifi NS, Asim S, Khan F, Ahmed N (2016) Seismic and well log driven structural and petrophysical analysis of the lower goru formation in the lower indus basin, Pakistan. Geosci J 20:57–75
  • 41. Ødegaard E and Avseth P (2003), Interpretation of elastic inversion results using rock physics templates: EAGE, Expanded Abstracts.
  • 42. Ohaegbuchu HE, Igboekwe MU (2016) Determination of subsurface rock properties from AVO analysis in Konga oil field of the Niger Delta. Southeast Nigeria Model Earth Syst Environ 2:124. https://doi.org/10.1007/s40808-016-0184-9
  • 43. Okeugo CG, Onuoha KM, Ekwe CA, Anyiam OA, Dim CI (2019) Application of crossplot and prestack seismic-based impedance inversion for discrimination of lithofacies and fluid prediction in an old producing field, Eastern Niger Delta Basin. J Pet Explor Prod Technol 9(1):97–110
  • 44. Ping G, Shasha J, Caizhen P (2014) Technologies and countermeasures for gas recovery enhancement. Natural Gas Industry B 1:96–102
  • 45. Sengupta M, Bachrach R (2007) Uncertainty in seismic-based pay volume estimation; analysis using rock physics and Bayesian statistics. Lead Edge 26:184–189
  • 46. Sen MK, Stoffa PL (1991) Nonlinear one-dimensional seismic waveform inversion using simulated annealing. Geophysics 56:1624–1638
  • 47. Shah SMI (1977), Stratigraphy of Pakistan. Geological Survey of Pakistan.
  • 48. Shuaib SM (1982) Geology and hydrocarbon potential of offshore Indus basin. American Association of Petroleum geologists (AAPG) Bulletin, 66: 940–946
  • 49. Shuangquan C, Shangxu W, Yonggang Z, Min J (2009) Reservoir prediction using pre-stack inverted elastic parameters. Appl Geophys 6(4):349–358
  • 50. Simmons JL, and Backus MM (1996), Waveform-based AVO inversion and AVO prediction-error: Geophysics 61: 1575-1588
  • 51. Smith GC, Gidlow PM (1987) Weighted stacking for rock property estimation and detection of gas. Geophys Prospect 35:993–1014
  • 52. Soleimani F, Hosseini E, Hajivand F (2020) Estimation of reservoir porosity using analysis of seismic attributes in an Iranian oil field. J Petrol Explor Prod Technol 10:1289–1316
  • 53. Tan Z, Lu T, Liu Y, Wu L, Yang Y (2016) Technical ideas of recover enhancement in the sulgie gas field during the 13th five-year plan. Natural Gas Industry B 3:234–244
  • 54. Tarantola A (1986) A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics 51:1893–1903
  • 55. Tayyab MN, Asim S, Siddiqui MM, Naeem M, Solange SH, Babar FK (2017) Seismic attributes’ application to evaluate the goru clastics of indus basin Pakistan. Arab J Geosci 10:158
  • 56. Wagner C, Gonzalez A, Argawal V, Koesoemadinata A, Ng D, Trares S, Biles N, Fisger K (2012) Quantitative application of post stack acoustic impedance inversion to subsalt reservoir development. Lead Edge 31:493–612
  • 57. Yi BY, Lee GH, Kang NK, Yoo DG, Lee JY (2018) Deterministic estimation of gas-hydrate resource volume in a small area of the Ulleung Basin, East Sea (Japan Sea) from rock physics modeling and pre-stack inversion. Mar Pet Geol 92:597–608
  • 58. Zhou HT, Li DY, Liu XT, Shan Y, Gong W (2019) Sweet spot prediction in tight sandstone reservoir based on well-bore rock simulation. Pet Sci 16:1285–1300
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01847a87-b66e-4b98-a353-244600f9572d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.