PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monitoring spatial and temporal scales of shoreline changes in Lahou-Kpanda (Southern Ivory Coast) using landsat data series (TM, ETM+ and OLI)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shoreline changes are crucial for assessing human-ecosystem interactions in coastal environments. They are a valuable tool for determining the environmental costs of socioeconomic growth along coasts. In this research, we present an assessment of shoreline changes along the eastern coast of Lahou-Kpanda of the Ivory Coast during the period from 1980 to 2020 by applying Digital Shoreline Analysis System method using Landsat Data Series. The measurement of the shoreline dynamics of the Lahou-Kpanda coastline is mainly described in three parts: the west straight cordon, the dynamics at the mouth and the east straight cordon. The findings show a drastic reduction in natural shorelines. The greatest transition occurred along the mouth segment of the coast, where the average erosive velocity approaches 90 meters each year and the average distance has decreased by around 2 kilometers. The Ivory Coast lost more than 40% of its biological shorelines between 1980 and 2020, according to this report, a worrying development because these are regions that were once biologically abundant and highly rich. In general, human operations on the Ivory Coast’s shorelines have never had such an impact. The effects of these changes on habitats, as well as the vulnerability of new shoreline investments to increased human activity and sea-level rise, must be measured.
Słowa kluczowe
Rocznik
Strony
145--158
Opis fizyczny
Bibliogr. 30 poz., fot., tab., wykr.
Twórcy
  • Laboratory of Demography and Spatial Dynamics, University Alassane Ouattara-Bouaké, Ivory Coast
autor
  • Laboratory of Applied Geology, Geomatics and Environment, Faculty of Sciences Ben M’sik, Morocco
  • Laboratory of Demography and Spatial Dynamics, University Alassane Ouattara-Bouaké, Ivory Coast
  • Laboratory of Demography and Spatial Dynamics, University Alassane Ouattara-Bouaké, Ivory Coast
Bibliografia
  • 1. Guerrera F., Martín-Martín M., Tramontana M., Nimon B., Kpémoua K.E.: Shoreline Changes and Coastal Erosion: The Case Study of the Coast of Togo (Bight of Benin, West Africa Margin). Geosciences, vol. 11, 2021, 40. https://doi.org/10.3390/geosciences11020040.
  • 2. Passeri D.L., Hagen S.C., Bilskie M.V., Medeiros S.C.: On the significance of incorporating shoreline changes for evaluating coastal hydrodynamics under sea level rise scenarios. Natural Hazards, vol. 75, 2015, pp. 1599–1617. https://doi.org/10.1007/s11069-014-1386-y.
  • 3. Tian H., Xu K., Goes J.I., Liu Q., do Rosário Gomes H., Yang M.: Shoreline Changes Along the Coast of Mainland China – Time to Pause and Reflect? ISPRS International Journal of Geo-Information, vol. 9, 2020, 572. https://doi.org/10.3390/ijgi9100572.
  • 4. Bevacqua E., Vousdoukas M.I., Zappa G., Hodges K., Shepherd T.G., Maraun D., Mentaschi L., Feyen L.: More meteorological events that drive compound coastal flooding are projected under climate change. Communications Earth & Environment, vol. 1, 2020, 47. https://doi.org/10.1038/s43247-020-00044-z.
  • 5. Thoai T.Q., Rañola R.F., Camacho L.D., Simelton E.: Determinants of farmers’ adaptation to climate change in agricultural production in the central region of Vietnam. Land Use Policy, vol. 70, 2018, pp. 224–231. https://doi.org/10.1016/j.landusepol.2017.10.023.
  • 6. Aouiche I., Daoudi L., Anthony E.J., Sedrati M., Ziane E., Harti A., Dussouillez P.: Anthropogenic effects on shoreface and shoreline changes: Input from a multi-method analysis, Agadir Bay, Morocco. Geomorphology, vol. 254, 2016, pp. 16–31. https://doi.org/10.1016/j.geomorph.2015.11.013.
  • 7. Melet A., Teatini P., Le Cozannet G., Jamet C., Conversi A., Benveniste J., Almar R.: Earth Observations for Monitoring Marine Coastal Hazards and Their Drivers. Surveys in Geophysics, vol. 41, 2020, pp. 1489–1534. https://doi.org/10.1007/s10712-020-09594-5.
  • 8. Ghosh M.K., Kumar L., Roy C.: Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 101, 2015, pp. 137–144. https://doi.org/10.1016/j.isprsjprs.2014.12.009.
  • 9. Rasuly A., Naghdifar R., Rasoli M.: Monitoring of Caspian Sea coastline changes using object-oriented techniques. Procedia Environmental Sciences, vol. 2, 2010, pp. 416–426. https://doi.org/10.1016/j.proenv.2010.10.046.
  • 10. Hauhouot A.C.: Analyse et cartographie de la dynamique du littoral et des risques ‘naturels’ côtiers en Côte d’Ivoire. Université de Nantes, Nantes 2000 [Ph.D. thesis].
  • 11. Dominici D., Zollini S.: Remote sensing in coastline detection. Journal of Marine Science and Engineering, vol. 8, 2020, pp. 8–9. https://doi.org/10.3390/JMSE8070498.
  • 12. Umar Z., Akib W.A.A.W.M., Ahmad A.: Monitoring shoreline change using remote sensing and GIS: A case study of Padang coastal area, Indonesia. [in:] 2013 IEEE 9th International Colloquium on Signal Processing and its Applications, CSPA 2013, IEEE, 2013, pp. 280–284. https://doi.org/10.1109/CSPA.2013.6530056.
  • 13. Yasir M., Sheng H., Fan H., Nazir S., Niang A.J., Salauddin M., Khan S.: Automatic Coastline Extraction and Changes Analysis Using Remote Sensing and GIS Technology. IEEE Access, vol. 8, 2020, pp. 180156–180170. https://doi.org/10.1109/ACCESS.2020.3027881.
  • 14. Elkafrawy S.B., Basheer M.A., Mohamed H.M., Naguib D.M.: Applications of remote sensing and GIS techniques to evaluate the effectiveness of coastal structures along Burullus headland-Eastern Nile Delta, Egypt. Egypt. Journal of Remote Sensing & Space Sciences, vol. 24, 2020, pp. 247–254. https://doi.org/10.1016/j.ejrs.2020.01.002.
  • 15. Rangel-Buitrago N., Neal W.J., de Jonge V.N.: Risk assessment as tool for coastal erosion management. Ocean & Coastal Management, vol. 186, 2020, 105099. https://doi.org/10.1016/j.ocecoaman.2020.105099.
  • 16. Orombelli G., Pranzini E.: Considerations on coastal protection and management. Rendiconti Lincei. Scienze Fisiche e Naturali, vol. 31, 2020, pp. 365–368. https://doi.org/10.1007/s12210-020-00912-y.
  • 17. Assalé P.: Caractérisation sédimentologique, palynologique, géochimique et paléoenvironnementale des formations sédimentaires connexes à la faille des lagunes (Est du bassin onshore de Côte d’Ivoire). Université Félix Houphouët-Boigny (Abidjan, Côte d’Ivoire), Français, 2013 [thesis].
  • 18. Tagini B.: Esquisse structurale de la Côte d’Ivoire: essai de géotectonique régionale. Bulletin de la Direction des mines et de la geologie de Cote d’Ivoire, 5, SODEMI, 1972.
  • 19. Tastet J.-P., Martin L., Aka K.: Géologie et environnements sédimentaires de la marge continentale de Côte d’Ivoire. [in:] Le Loeuff P., Marchal E., Amon Kothias J.B. (éd.), Environnement et ressources aquatiques de Côte d’Ivoire. Tome 1: Le milieu marin, ORSTOM, Paris 1993, pp. 23–62.
  • 20. Douzo J.W.D., Amalaman K.T.S., Dibo W.B., Yao N.J.P., Djeya K.L., Koffi C.L., Digbehi Z.B., Toufiq A., Goha R.B.: Caracterisation Lithostratigraphique et Sedimentologique des Depôts des Sondages de Fresco et de Grand-Lahou (SudOuest de la Côte d’Ivoire): Essai de Correlation et Paleoenvironnements. European Scientific Journal ESJ, vol. 15, no. 15, 2019. https://doi.org/10.19044/esj.2019.v15n15p401.
  • 21. Digbehi Z., Bi K., Adopo K., Guédé K., Tahi I., Yao K.: Palynologie et environnements de dépôt des sédiments d’âge cénomanien supérieur-maastrichtien inférieur dans le bassin offshore de Côte d’Ivoire (Afrique de l’ouest). Sciences & Nature, vol. 8, 2011, pp. 95–105.
  • 22. Tea-Yassi J., Digbehi Z.B., Yao K.R., Glohi B.V.: Étude de quelques palynomorphes du crétace supérieur du bassin offshore de Côte d’Ivoire: implications biostratigraphiques et paléoenvironnementales. Journal of African Earth Sciences, vol. 29, 1999, pp. 783–798. https://doi.org/10.1016/S0899-5362(99)00129-3.
  • 23. Hinschberger F., Pomel R.: Oro-hydrographie. [in:] Atlas de Côte d’Ivoire, Ministère du Plan de Côte d’Ivoire, ORSTOM, Université d’Abidjan, 1979.
  • 24. Liu Y., Wang X., Ling F., Xu S., Wang C.: Analysis of Coastline Extraction from Landsat-8 OLI Imagery. Water, vol. 9, 2017. https://doi.org/10.3390/w9110816.
  • 25. Pardo-Pascual J.E., Almonacid-Caballer J., Ruiz L.A., Palomar-Vázquez J.: Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sensing of Environment, vol. 123, 2012, pp. 1–11. https://doi.org/10.1016/j.rse.2012.02.024.
  • 26. Wicaksono A., Wicaksono P., Khakhim N., Farda N.M., Marfai M.A.: Semi-automatic shoreline extraction using water index transformation on Landsat 8 OLI imagery in Jepara Regency. [in:] Pham T.D., Kanniah K.D., Arai K., Perez G.J.P., Setiawan Y., Prasetyo L.B., Murayama Y. (eds.), Sixth International Symposium on LAPAN-IPB Satellite, vol. 11372, SPIE, 2019, pp. 500–509.
  • 27. Nassar K., Mahmod W.E., Fath H., Masria A., Nadaoka K., Negm A.: Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Marine Georesources & Geotechnology, vol. 37, pp. 81–95. https://doi.org/10.1080/1064119X.2018.1448912.
  • 28. Bheeroo R.A., Chandrasekar N., Kaliraj S., Magesh N.S.: Shoreline change rate and erosion risk assessment along the Trou Aux Biches–Mont Choisy beach on the northwest coast of Mauritius using GIS-DSAS technique. Environmental Earth Sciences, vol. 75, 2016, 444. https://doi.org/10.1007/S12665-016-5311-4.
  • 29. Sheik M., Chandrasekar: A shoreline change analysis along the coast between Kanyakumari and Tuticorin, India, using digital shoreline analysis system. Geo-spatial Information Science, vol. 14(4), 2011, pp. 282–293. https://doi.org/10.1007/S11806-011-0551-7.
  • 30. Thieler E.R., Himmelstoss E.A., Zichichi J.L., Ergul A.: The Digital Shoreline Analysis System (DSAS) Version 4.0 – An ArcGIS extension for calculating shoreline change. Open-File Report 2008–1278. https://doi.org/10.3133/OFR20081278.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-017fe5c6-1eec-488a-bd43-c89864efd8be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.