Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The following paper presents an environmental examination and the results of the selected analyses of archaeological waterlogged oak wood (Quercus sp.) obtained from excavations carried out at the early medieval site of Czermno in eastern Poland near the Ukrainian border. Due to the good state of preservation of the wood tissue (De Jong’s classification class III – maximum moisture content Umax < 185%) and its deposition in near anaerobic layers (reed peat and calcareous gyttja) an attempt was made to obtain the DNA sequence from samples acquired from the uncovered historical construction. In the course of the research, a DNA sequence was obtained from one sample derived from the trial pit W4/2014, the radiocarbon dated to 776-982 calAD. A comparison of the DNA data extracted from the historical wood to two sequences obtained from the trees (Quercus robur L.) growing near the site of Czermno, indicates clear similarities between each of them. The DNA sequence obtained from the archaeological oak wood confirms the assumption that proximate anaerobic layers, under specific conditions, can inhibit the degradation of DNA structure.
Rocznik
Tom
Strony
135--151
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
- Scientific Association of Polish Archaeologists, Warsaw, Poland
autor
- Department of Wood Science and Wood Protection, Warsaw University of Life Sciences, Warsaw, Poland
autor
- Institute of Soil Science and Plant Cultivation, Department of Soil Science Erosion and Land Conservation, Puławy, Poland
autor
- Cardinal Stefan Wyszynski University in Warsaw, Faculty of Biology and Environmental Sciences, Warsaw, Poland
autor
- Cardinal Stefan Wyszynski University in Warsaw, Institute of Archaeology, Warsaw, Poland
autor
- Forest Research Institute, Department of Forest Ecology, Sękocin Stary, Poland
autor
- Department of Wood Science and Wood Protection, Warsaw University of Life Sciences, Warsaw, Poland
Bibliografia
- Agricultural soil map, Archive of Institute of Soil Science and Plant Cultivation, ul. Czartoryskich 8, 24-100 Puławy, Poland
- Aniszewski M., Drożdżek M., Solecki R., Witomski P. [2015]: Analysis and conservation of waterlogged wooden objects from the early medieval archaeological site of Czermno. Annals of Warsaw University of Life Sciences. Forestry and Wood Technology 92: 18-23
- Aniszewski M., Witomski P. [2013]: The state of preservation of archaeological wood uncovered in the Grotto foundations of the retaining wall of the Palace Museum in Wilanów. Drewno 56 [190]: 145-154
- Babiński L., Izdebska-Mucha D., Waliszewska B. [2014]: Evaluation of the state of preservation of waterlogged archaeological wood based on its physical properties: basic density vs. wood substance density. Journal of Archaeological Science 46: 372-383
- Björdal C.G., Nilsson T., Daniel G. [1999]: Microbial decay of waterlogged archaeological wood found in Sweden Applicable to archaeology and conservation. International Biodeterioration & Biodegradation 43 [1-2]: 63-73
- Blanchette R.A. [2000]: A review of microbial deterioration found in archaeological wood from different environments. International Biodeterioration & Biodegradation 46: 189-204
- Broda M., Królikowska-Pataraja K., Mazela B., Siuda J. [2015]: The state of degradation of waterlogged wood from different environments. Annals of Warsaw University of Life Sciences. Forestry and Wood Technology 91: 23-27
- Cross S.H., Sherbowitz-Wetzor O.P. [1953]: The Russian Primary Chronicle. Laurentian Text. The Mediaeval Academy of America, Cambridge: 95-132
- Deguilloux M.F., Bertel L., Celant A., Pemonge M.H., Sadori L., Magri D. Petit R.J. [2006]: Genetic analysis of archaeological wood remains: first results and prospects. Journal of Archaeological Science 33: 1216-1227
- Deguilloux M.F., Pemonge M.H., Bertel L., Kremer A., Petit R. J. [2003]: Checking the geographical origin of oak wood: molecular and statistical tools. Molecular Ecology 12 [6]: 1629-1636
- Documentation in the Archive of Laboratorium Datowań Bezwzględnych, Cianowice, ul. Krakowska 244, 32-043 Skała, Poland
- Documentation in the Archive of Wojewódzki Zarząd Melioracji i Urządzeń Wodnych w Lublinie, ul. Karłowicza 4, 20-027 Lublin, Poland
- Dow B.D., Ashley M.V., Howe H.F. [1995]: Characterization of highly variable (GA/CT) n microsatellites in the bur oak, Ouercus macrocarpa. Theoretical and Applied Genetics 91: 137-141
- Dumolin-Lapègue S., Pemonge M.H., Gielly L., Taberlet P., Petit R.J. [1999]: Amplification of oak DNA from ancient and modern wood. Molecular Ecology 8 [12]: 2137-2140
- Fengel D., Wegener G. [1989]: Wood. Chemistry, ultrastructure, reactions. De Gruyter: 57
- Florian M.L.E. [1990]: Scope and history of archaeological wood. In: Rowell R.M., Barbour R.J. (eds.), Archaeological wood properties, chemistry and preservation. Advances in Chemistry Series 225. American Chemical Society, Washington, DC: 3-32
- Gilbert M.T.P., Binladen J., Miller W., Wiuf C., Willerslev E., Poinar H., Carlson J. E., Leebens-Mack J. H., Schuster S.C. [2007]: Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis. Nucleic Acids Research. 35 [1]: 1-10
- Hall T.A. [1999]: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98
- Hansen A., Willerslev E., Wiuf C., Mourier T., Arctander P. [2001]: Statistical evidence for miscoding lesions in ancient DNA templates. Molecular Biology and Evolution 18: 262-265
- Helms A.Ch., Martiny A.C, Hofman-Bang J., Ahring B., Kilstrup M. [2004]: Identification of bacterial cultures from archaeological wood using molecular biological techniques. International Biodeterioration & Biodegradation 53: 79-88
- Hoffman P. [2013]: Conservation of Archaeological Ships and Boats – personal experiences. Archetype Publications Ltd., London: 25-29
- Hoffman P., Jones M.A. [1990]: Structure and degradation process for archaeological wood. In: Rowell R.M., Barbour R.J. (eds.), Archaeological wood properties, chemistry and preservation. Advances in Chemistry Series 225. American Chemical Society, Washington, DC: 33-65
- Jensen P., Gregory D.J. [2006]: Selected physical parameters to characterize the state of preservation of waterlogged archaeological wood: a practical guide for their determination. Journal of Archaeological Science 33: 551-559
- Jiao L., Liu X., Jiang X., Yin Y. [2015]: Extraction and amplification of DNA from aged and archaeological Populus euphratica wood for species identification. Holzforschung 69 [8]: 925-931
- Kampfer S., Lexer C., Glossl J., Steinkellner H. [1998]: Characterization of (GA), microsatellite loci from Quercus robur. Hereditas 129 [2]: 183-186
- Kim Y.S., Singh A.P. [2000]: Micromorphological characteristics of wood biodegradation in wet environments: A review. International Association of Wood Anatomists Journal 21 [2]: 135-155
- Krutul D., Radomski A., Zawadzki J., Zielenkiewicz T., Antczak A. [2010]: Comparison of the chemical composition of the fossil and recent oak wood. Wood Research 55 [3]: 113-120
- Liepelt S., Sperisen C., Deguilloux M.F., Petit R.J., Kissling R., Spencer M., de Beaulieu J.L., Taberlet P., Gielly L., Ziegenhagen B. [2006]: Authenticated DNA from ancient wood remains. Annals of Botany 98 [5]: 1107-11
- McConnachie G., Eaton R., Jones M. [2008]: A re-evaluation of the use of maximum moisture content data for assessing the condition of waterlogged archaeological wood. e-PRESERVATIONScience: 5: 29-35
- Mańkowski P., Kozakiewicz P., Zielenkiewicz T. [2013]: Investigations of iron content in fossil oak from a medieval settlement in Płońsk. Annals of Warsaw University of Life Sciences. Forestry and Wood Technology 83: 201-205
- Muir G., Schlötterer C. [2005]: Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Molecular Ecology 14: 549-561
- Piotrowski M., Wołoszyn M. [2012]: Czermno/Cherven – archaeological investigation of an early Rus’ medieval town in Eastern Poland in 2010-2011. A preliminary report. In: Salamon M., Wołoszyn M., Musin A., Špehar P., Hardt M., Kruk M.P., Sulikowska-Gąska A. (eds), Rome, Constantinople and Newly-Converted Europe: Archaeological and Historical Evidence 2. Kraków-Leipzig-Rzeszów-Warszawa: 361
- Polskie Towarzystwo Gleboznawcze (Polish Society of Soil Science) [1989]: Systematyka gleb Polski (Polish soil classification). Roczniki Gleboznawcze (Soil Science Annual) 40 [3/4]: Warszawa: 1-150
- Pollmann B., Jacomet S., Schlumbaum A. [2005]: Morphological and genetic studies of waterlogged Prunus species from the Roman vicus Tasgetium (Eschenz, Switzerland). Journal of Archaeological Science 32 [10]: 1471-1480
- Poznański M. [2011]: Aerial surveys of the Earthwork Castle in Czermno. Preliminary interpretations and reconstructions of the early medieval elements of the settlement complex. Analecta Archaeologica Ressoviensia 5: 439-456
- Schlumbaum A., Tensen M., Jaenicke-Despre´s V. [2008]: Ancient plant DNA in archaeobotany. Vegetation History and Archaeobotany 17: 233-244
- Solecki R., Poznański M., Aniszewski M. [2012, 2013, 2014]: Sprawozdanie z badań archeologicznych na obszarze łąk na północ od grodziska. Archiwum WUOZ, Delegatura w Zamościu
- Steinkellner H., Fluch S., Turetschek E., Lexer C., Streiff R., Kremer A., Burg K., Glössl J. [1997]: Identification and characterization of (GA/CT) n- microsatellite loci from Quercus petraea. Plant Molecular Biology 33: 1093-1096
- Speirs A.K., McConnachie G., Lowe A. [2009]: Chloroplast DNA from 16th century waterlogged oak in a marine environment: initial steps in sourcing the Mary Rose timbers. Archaeological science under a microscope: studies in residue and ancient DNA analysis in honour of Thomas H. Loy. Terra Australis 30: 175-189
- Tamburini D., Łucejko J., Zborowska M., Modugno F., Prądzyński W., Colombini M.P. [2015]: Archaeological wood degradation at the site of Biskupin (Poland): Wet chemical analysis and evaluation of specific Py-GC/MS profiles. Journal of Analytical and Applied Pyrolysis 115: 7-15
- Tani N., Tsumura Y., Sato H. [2003]: Nuclear gene sequences and DNA variation of Cryptomeria japonica samples from the postglacial period. Molecular Ecology 12: 859-868
- Wagenführ R., Scheiber C. [1974]: Holztatlas. VEB Fachbuchverlag, Leipzig: 342-343
- Watson J.M., Riha K. [2011]: Telomeres, aging, and plants: from weeds to Methuselah – a mini-review. Gerontology 57 [2]: 129-136
- Wołoszyn M., Janeczek A., Dobrowolski R., Rodzik J., Mroczek P., Zagórski P., Bałaga K., Pidek I.A., Hajdas I. [2015]: Beyond boundaries ... of medieval principalities, cultures and scientific disciplines. Cherven Towns – insights from archaeology, cartography and paleogeography. In: Heinrich-Tamáska O., Herold H., Straub P., Vida T. (eds.), Castellum, Civitas, Urbs. Centres and Elites in Early Medieval East-Central Europe. Castellum Pannonicum Pelsonense 6, Budapest-Leipzig-Keszthely-Rahden/Westf: 180-182
- Yang D.Y., Watt K. [2005]: Contamination controls when preparing archaeological remains for ancient DNA analysis. Journal of Archaeological Science 32 [3]: 331-336
- Zielski A., Krąpiec M. [2009]: Dendrochronologia (Dendrochronology). Wydawnictwo Naukowe PWN, Warszawa: 101
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-017dd71e-3644-44f0-a0b2-65601b661399