Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The development of civilization contributed to the exponential growth in the production of plastics. Policy of the, so-called, “European Green Deal” places particular emphasis on reducing the use of plastics through various mechanisms, including their reuse, recycling and, in particular, the development of new biodegradable and compostable plastics. In order to check if plastics are suitable for biodegradability and compostability they must undergo a series of tests in accordance with applicable standards. The biodegradation test procedures are very general and allow for the use of different temperatures of the biodegradation process in the test. The aim of the research was to evaluate the influence of temperature on the biodegradation process of selected packaging materials. The obtained results show a significant influence of the temperature of the biodegradation process of all 3 tested types of packaging materials: oxy-biodegradable, corn starch and paper. Statistically significant differences in the biodegradation rate of the tested packaging materials were demonstrated in as low as 40°C, despite the low intensity of the process. As the process temperature increased to 45 and 50°C, a statistically significant increase in CO2 productions was recorded. CO2 is produced by the degradation of polymers and is an indicator for this process. At 50°C, the highest decomposition rate, resulting in the highest CO2 production, was recorded in the case of corn starch films. Oxy-biodegradable material showed worst degradation potential what excludes it from composting processes.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
74--83
Opis fizyczny
Bibliogr. 26 poz., fot., tab., wykr.
Twórcy
autor
- Research Network Łukasiewicz – Institute of Ceramics and Building Materials, Division of Material, Processing and Environmental Engineering, Opole, Poland
autor
- Opole University, Opole, Poland
autor
- Research Network Łukasiewicz – Institute of Ceramics and Building Materials, Division of Material, Processing and Environmental Engineering, Opole, Poland
autor
- Research Network Łukasiewicz – Institute of Ceramics and Building Materials, Division of Material, Processing and Environmental Engineering, Opole, Poland
Bibliografia
- 1. Abdelmoez, W., Dahab, I., Ragab, E.M., Abdelsalam, O.A. & Mustafa A. (2021). Bio- and oxo-degradable plastics: Insights on facts and challenges. Polymers for Advanced Technologies, 32:1981-1996. DOI: 10.1002/pat.5253
- 2. Abioye, A.A., Oluwadare, O.P., Abioye O.P., Obuekwe, Ch.C., Afolalu, A.S., Atanda, P.O. & Fajobi, M.A. (2019). Environmental Impact on Biodegradation Speed and Biodegradability of Polyethylene and Zea Mays Starch Blends. Journal of Ecological Engineering 20(9), pp. 277-284
- 3. Adamcova, D., Vaverková, M.D., Mašíček, T. & Břoušková E. (2016). Analysis of biodegrability of degradable/biodegradable plastic material in controlled composting environment. Journal of Ecological Engineering, 17(4), pp. 1-10. DOI: 10.12911/22998993/64564
- 4. Ahmed, S., Hall, A. M. & Ahmed, S. F. (2018) Biodegradation of Different Types of Paper in a Compost Environment. Proceedings of the 5th International Conference on Natural Sciences and Technology (ICNST’18) March 30-31, (2018), Asian University for Women, Chittagong, Bangladesh.
- 5. Arefian, M., Tahmourespour, A. & Zia, M. (2020). Polycarbonate biodegradation by newly isolated Bacillus strains. Archives of Environmental Protection. 46(1) pp. 14-20. DOI: 10.24425/aep.2020.132521
- 6. Czarnecka-Komorowska, D., Bryll, K., Kostecka, E., Tomasik, M., Piesowicz, E. & Gawdzińska K. (2021). The composting of PLA/HNT biodegradable composites as an eco-approach to the sustainability. Bulletin of The Polish Academy of Sciences Technical Sciences, 69(2). DOI: 10.24425/Bpasts.2021.136720
- 7. Domka, L., Malicka, A., Jagła, K. & Kozak, A. (2009). Biodegradation of Starch-Modified Foil in Natural Conditions. Polish J. of Environ. Stud. 18(2), pp. 191-195
- 8. Du, Y.L., Cao, Y., Lu, F., Li, F., Cao, Y., Wang, X.L., & Wang, Y.Z. (2008) Biodegradation behaviors of thermoplastic starch (TPS) and thermoplastic dialdehyde starch (TPDAS) under controlled composting conditions. Polymer Testing 27, pp. 924-930. DOI: 10.1016/j.polymertesting.2008.08.002
- 9. Ghorpade, V.M., Gennadios, A. & Hanna, M.A. (2001). Laboratory composting of extruded poly(lactic acid) sheets. Bioresource Technology 76, pp. 57-61.
- 10. Gomez, E.F. & Michel, F.C. Jr. (2013). Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polymer Degradation and Stability 98, pp. 2583-2591. DOI: 10.1016/j.polymdegradstab.2013.09.018
- 11. Gorokhova, E., Ek, K. & Reichelt S. (2020) Algal Growth at Environmentally Relevant Concentrations of Suspended Solids: Implications for Microplastic Hazard Assessment. Frontiers in Environmental Science 19 Nov. 2020. DOI: 10.3389/fenvs.2020.551075
- 12. Herniou-Julien, C., Mendieta, J.R. & Gutiérrez T.J. (2019). Characterization of biodegradable/non-compostable films made from cellulose acetate/corn starch blends processed under The effect of temperature on the biodegradation of different types of packaging materials under reactive extrusion conditions. Food Hydrocolloids 89, pp. 67-79 DOI: 10.1016/j.foodhyd.2018.10.024
- 13. Ivankovic, A., Zeljko, K., Talic, S., Martinovic Bevanda, A. & Lasic M. (2017). Biodegradable packaging in the food industry. Arch Lebensmittelhyg 68, pp. 26-38. DOI: 10.2376/0003-925X-68-26
- 14. Luchese, C.L., Benelli, P., Spada, J.C. & Tessaro I.C. (2018). Impact of the starch source on the physicochemical properties and biodegradability of different starch-based films. Journal of Applied Polymer Science. DOI: 10.1002/APP.46564
- 15. Maria, P., Cadar, O., Cadar, S., Levei, E., Pojar-Feneşan, M., Balea, A. & Pascalau, V. (2010). Biodegradability determination of vegetal originated packaging materials under controlled composting conditions. Agricultura - Ştiinţă şi practică 1-2, pp. 73-77
- 16. Markowicz, F., Król, G., Szymańska-Pulikowska, A. (2018). Biodegradable Package - Innovative Purpose or Source of the Problem. Journal of Ecological Engineering, 20(1), pp. 228-237. DOI: 10.12911/22998993/94585
- 17. Markowicz, F. & Szymańska-Pulikowska, A. (2019). Analysis of the Possibility of Environmental Pollution by Composted Biodegradable and Oxo-Biodegradable Plastics. Geosciences, 9(11). DOI: 10.3390/geosciences9110460
- 18. McLauchlin, A., Thomas, N.L., Patrick, S.G. & Clarke J. (2012) Oxo-degradable plastics: Degradation, environmental impact and recycling. Waste and Resource Management, 165(3), pp. 133-140. DOI: 10.1680/warm.11.00014
- 19. Popa, M., Mitelut, A., Niculita, P., Geicu, M., Ghidurus, M. & Turtoi M. (2011). Biodegradable materials for food packaging applications. Journal of Environmental Protection and Ecology, 12(4). pp. 1825-1834.
- 20. Seruga, P., Krzywonos, M., Wilk, M. & Borowiak D. (2019). The Effect of Selected Parameters on the Stabilization Efficiency of the Organic Fraction of Municipal Solid Waste (OFMSW) in the Mechanical and Biological Treatment Plant (MBT). Annual Set The Environment Protection, 21, pp. 316-329.
- 21. Spiridon, I., Anghel, N.C., Darie-Nita, R.N., Iwańczuk, A. Ursu, R.G. & Spiridon I.A. (2019). New composites based on starch/Ecoflex®/biomass wastes: Mechanical, thermal, morphological and antimicrobial properties. International Journal of Biological Macromolecules, 156, pp. 1435-1444. DOI: 10.1016/j.ijbiomac.2019.11.185
- 22. Tabasi, R.Y. & Ajji, A. (2015). Selective degradation of biodegradable blends in simulated laboratory composting. Polymer Degradation and Stability, 120, pp. 435-442. DOI: 10.1016/j.polymdegradstab.2015.07.020
- 23. Yashchuk, O., Portillo, F.S. & Hermida, E. B. (2012). Degradation of polyethylene film samples containing oxodegradable additives. Procedia Materials Science, 1, pp. 439-445.
- 24. Youssef, A.M. & El.-Sayed S.M. (2019). Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydrate Polymers. 193, 1 pp. 19-27. DOI: 10.1016/j.carbpol.2018.03.088
- 25. Vasile, C., Pamfil, D., Râpă, M., Darie-Niţăa, R.N., Mitelut, A.C., Popa E.E., Popescu, P.A., Draghici, M.C. & Popac, M.E. (2018). Study of the soil burial degradation of some PLA/CS biocomposites. Composites Part B 142, pp. 251-262. DOI: 10.1016/j.compositesb.2018.01.026
- 26. Wróblewska-Krepsztul, J., Rydzkowski, T., Borowski, G., Szczypiński, M., Klepka, T. & Thakur, V.K. (2018). Recent Progress in Biodegradable Polymers and Nanocomposites Based Packaging Materials for Sustainable Environment. International Journal of Polymer Analysis and Characterization. 23, 4, pp. 383-395. DOI: 10.1080/1023666X.2018.1455382
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-017a5151-112b-4874-89d1-f19f420738cb