PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Pyrite depression by sodium metabisulfite and dextrin with xanthates: contact angle, floatability, zeta potential and IR spectroscopy studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The individual and combined depressive action of metabisulfite and dextrin on pyrite in the presence and absence of amyl xanthate has been studied through contact angle, zeta potential, microflotation, and IR spectroscopy analyses. The combined application of depressants significantly reduces the contact angle of pyrite compared with that of galena, with this effect being enhanced when the pulp is oxygenated during conditioning with metabisulfite, facilitating pyrite surface oxidation. Zeta potential measurements demonstrate the role of the oxidation process in decreasing the magnitude of the negative electric charge on the pyrite surface. These results were further corroborated by IR spectroscopy studies, which confirmed the oxidation of the pyrite surface in the presence of metabisulfite, as well as the co-adsorption of dextrin and amyl xanthate. In microflotation experiments, pyrite and galena exhibited contrasting flotation behaviors, with pyrite being effectively depressed at pH 8 when a combination of air, metabisulfite, and dextrin was used.
Słowa kluczowe
Rocznik
Strony
art. no. 197068
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
  • Mining, Metallurgical and Geological Engineering Department, Engineering Division, Guanajuato University. Ex-Hacienda de San Matías S/N. Guanajuato, Gto, 36020 México. Guanajuato 36000, México
  • Mining, Metallurgical and Geological Engineering Department, Engineering Division, Guanajuato University. Ex-Hacienda de San Matías S/N. Guanajuato, Gto, 36020 México. Guanajuato 36000, México
  • Mining, Metallurgical and Geological Engineering Department, Engineering Division, Guanajuato University. Ex-Hacienda de San Matías S/N. Guanajuato, Gto, 36020 México. Guanajuato 36000, México
  • Mining, Metallurgical and Geological Engineering Department, Engineering Division, Guanajuato University. Ex-Hacienda de San Matías S/N. Guanajuato, Gto, 36020 México. Guanajuato 36000, México
  • Mining, Metallurgical and Geological Engineering Department, Engineering Division, Guanajuato University. Ex-Hacienda de San Matías S/N. Guanajuato, Gto, 36020 México. Guanajuato 36000, México
  • Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carr, Colima-Coquimatlán, 28400, Coquimatlán, Colima, Mexico
  • School of Resources and Safety Engineering, Wuhan Institute of Technology, Wuhan 430073, Hubei, China
Bibliografia
  • ADAMSON, A.W., GAST, A.P., 1967. Physical chemical of surfaces. Interscience publishers, New York, 1967.
  • BRANDT, C., ELDIK, R.V., 1995. Transition Metal-Catalyzed Oxidation of Sulfur(IV) Oxides. Atmospheric-Relevant Processes and Mechanisms. Chem. Rev. 95, 119–190.
  • BRUGNARA, M., 2006. Contact Angle (imagej.net).
  • BULATOVIC, S.M., 2007. Handbook of flotation reagents : chemistry, theory and practice : flotation of sulphides ores. Elsevier Science & Technology Books.
  • BULUT, G., CEYLAN, A., SOYLU, B., GOKTEPE, F., 2011. Role of starch and metabisulphite on pure pyrite andpyritic copper ore flotation. Physicochem. Probl. Miner. Process 48, 39–48.
  • CHANDRA, A.P., GERSON, A.R., 2011. PYRITE (FES2) OXIDATION: A SUB-MICRON SYNCHROTRON INVESTIGATION OF THE INITIAL STEPS. Geochim. Cosmochim. Acta 75, 6239–6254.
  • CHEN, D., ARANCIBIA-MIRANDA, N., ESCUDEY, M., FU, J., LU, Q., AMON, C.H., GALATRO, D., GUZMÁN, A.M., 2023. Nonlinear dependence (on ionic strength, pH) of surface charge density and zeta potential in microchannel electrokinetic flow. Heliyon 9.
  • CHERNYSHOVA, I. V., 2003. An in situ FTIR study of galena and pyrite oxidation in aqueous solution. J. Electroanal. Chem. 558, 83–98.
  • CONNICK, R.E., ZHANG, Y.X., LEE, S., ADAMIC, R., CHIENG, P., 1995. Kinetics and Mechanism of the Oxidation of HSO3− by O2. 1. The Uncatalyzed Reaction. Inorg. Chem. 34, 4543–4553.
  • DÁVILA-PULIDO, G.I., URIBE-SALAS, A., ESPINOSA-GÓMEZ, R., 2011. Comparison of the depressant action of sulfite and metabisulfite for Cu-activated sphalerite. Int. J. Miner. Process. 101, 71–74.
  • DEMIRBAŞ, O., ALKAN, M., DOĞAN, M., TURHAN, Y., NAMLI, H., TURAN, P., 2007. Electrokinetic and adsorption properties of sepiolite modified by 3-aminopropyltriethoxysilanë aminopropyltriethoxysilanë. Journal of Hazardous Materials. 149, 650-656.
  • FENG, B., ZHONG, C., ZHANG, L., GUO, Y., WANG, T., HUANG, Z., 2020. Effect of surface oxidation on the depression of sphalerite by locust bean gum. Miner. Eng. 146. 106142.
  • FORNASIERO, D., EIJT, V., RALSTON, J., 1992. An electrokinetic study of pyrite oxidation. Colloids and Surfaces 62, 63–73.
  • FUERSTENAU, D.W., 1957. Correlation of contact angles, adsorption density, zeta potentials and flotation rate. Trans. AIME. 208, 1365-1367.
  • FUERSTENAU, M.C., NATALIE, C.A.,ROWE, R.M., 1990b. Xanthate adsorption on selected sulfides in the virtual absence and presence of oxygen, Part 1. Int. J. Miner. Process. 29, 89–98.
  • HEYDARI, G., MEHRABANI, J.V., BAGHERI, B., 2019. Selective separation of galena and sphalerite from pyrite-rich lead-zinc ores: A case study of the Kooshk mine, Central Iran. Int. J. Min. Geo-Engineering. 53, 43–50.
  • JIANG, C.L., WANG, X.H., PAREKH, B.K., 2000. Effect of sodium oleate on inhibiting pyrite oxidation. Int. J. Miner. Process. 58, 305–318.
  • KASOMO, R.M., LI, H., CHEN, Q., SORAYA, D.A., LEOPOLD, M., WENG, X., MWANGI, A.D., KIAMBA, E., GE, W., SONG, S., 2020. Behavior and mechanism of sodium sulfite depression of almandinefrom rutile in flotation system. Powder Technol. 374, 49–57.
  • LASKOWSKI, J.S., LIU, Q., BOLIN, N.J., 1991. Polysaccharides in flotation of sulphides. Part I. Adsorption of polysaccharides onto mineral surfaces. International Journal of Mineral Processing. 33, 223–234.
  • LIU, Q., LASKOWSKI, J.S., 1989. The interactions between dextrin and metal hydroxides in aqueous solutions. J. Colloid Interface Sci. 130, 101–111.
  • LIU, M., ZHANG, C., HU, B., SUN, Z., XU, Q., WEN, J., XIAO, J., DONG, Y., GAN, M., SUN, W., ZHU, J., CHEN, D., 2020. Enhancing flotation separation of chalcopyrite and galena by the surface synergism between sodium sulfite and sodium lignosulfonate. Appl. Surf. Sci. 507, 145042.
  • LIU, Q., ZHANG, Y., LASKOWSKI, J.S., 2000. The adsorption of polysaccharides onto mineral surfaces: An acid/base interaction. Int. J. Miner. Process. 60, 229–245.
  • LÓPEZ-VALDIVIESO, A., SÁNCHEZ-LÓPEZ, A.A., PADILLA-ORTEGA, E., ROBLEDO-CABRERA, A., GALVEZ, E., CISTERNAS, L., 2018. Pyrite depression by dextrin in flotation with xanthates. Adsorption and floatability studies. Physicochem. Probl. Miner. Process. 54, 1159–1171.
  • LÓPEZ-VALDIVIESO, A., CERVANTES, T.C., SONG, S., CABRERA, A.., LASKOWSKI, J.S., 2004. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector. Miner. Eng. 17, 1001–1006.
  • LÓPEZ-VALDIVIESO, A., LÓPEZ, A., ESCAMILLA, C., FUERSTENAU, M.C., 2006. Flotation and depression control of arsenopyrite through pH and pulp redox potential using xanthate as the collector. Int. J. Miner. Process. 81, 27–34.
  • LÓPEZ-VALDIVIESO, A., LÓPEZ, A., SONG, S., 2005. On the cathodic reaction coupled with the oxidation of xanthates at the pyrite/aqueous solution interface. Int. J. Miner. Process. 77, 154–164.
  • MU, Y., PENG, Y., 2019. The role of sodium metabisulphite in depressing pyrite in chalcopyrite flotation using saline water. Miner. Eng. 142, 105921
  • MU, Y., PENG, Y., LAUTEN, R.A., 2016a. The depression of pyrite in selective flotation by different reagent systems – A Literature review. Miner. Eng. 96-97, 143-156.
  • MU, Y., PENG, Y., LAUTEN, R.A., 2016b. The depression of copper-activated pyrite in flotation by biopolymers with different compositions. Miner. Eng. 96–97, 113–122.
  • MU, Y., PENG, Y., LAUTEN, R.A., 2015. Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant. Electrochim. Acta. 174, 133–142.
  • NIU, X., CHEN, J., LI, Y., XIA, L., LI, L., SUN, H., RUAN, R., 2019. Correlation of surface oxidation with xanthate adsorption and pyrite flotation. Appl. Surf. Sci. 495, 143411.
  • NYAMEKYE, G.A., LASKOWSKI, J.S., 1993. Adsorption and Electrokinetic Studies on the Dextrin-Sulfide Mineral Interactions. Journal of Colloid and Interface Science. 157 (1993) 160-167.
  • PAREDES, A., ACUÑA, S.M., GUTIÉRREZ, L., TOLEDO, P.G., 2019. Zeta potential of pyrite particles in concentrated solutions of monovalent seawater electrolytes and amyl xanthate. Minerals. 9, 1-12.
  • RATH, R., SUBRAMANIAN, S., 1999. Adsorption, electrokinetic and differential flotation studies on sphalerite and galena using dextrin. Int. J. Miner. Process. 57, 265–283.
  • RATH, R.K., SUBRAMANIAN, S., PRADEEP, T., 2000. Surface chemical studies on pyrite in the presence of polysaccharide-based flotation depressants. J. Colloid Interface Sci. 229, 82–91.
  • REYES, M., HERRERA, G., ESCUDERO, R., PATIÑO, F., REYES, I.A., FLORES, M., PALACIOS, E.G., JUÁREZ, J., BARRIENTOS, F., 2022. Surface Spectroscopy of Pyrite Obtained during Grinding and Its Magnetisation. Minerals. 12, 1444.
  • SHEN, W.Z., FORNASIERO, D., RALSTON, J., 2001. Flotation of sphalerite and pyrite in the presence of sodium sulfite. Int. J. Miner. Process. 63,17-28
  • WANG, X.-H., 1996. Interfacial Electrochemistry of Pyrite Oxidation and Flotation. J. Colloid Interface Sci. 171, 413-428.
  • WANG, C., LIU, R., AHMED KHOSO, S., LU, H., SUN, W., NI, Z., LYU, F., 2020. Combined inhibitory effect of calcium hypochlorite and dextrin on flotation behavior of pyrite and galena sulphides. Miner. Eng. 150.
  • ZHAI, Q., LIU, R., DONG, W., XIE, Z., SUN, W., 2025. Separation of galena and pyrite via green organic macromolecules at low alkalinity: Flotation response and surface adsorption mechanisms. Sep. Purif. Technol. 354, 129240.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0179bb48-2a11-400d-8a63-d35875694bf7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.