PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inter-/Intra-Laminar Reinforced Hybrid Fibre Composites by Needle Punching and Thermal Bonding: Evaluation of Mechanical and Static Puncture Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Inter-/intra-laminarne wzmocnienie hybrydowych kompozytów włóknistych poprzez igłowanie i łączenie termiczne: Ocena mechanicznej i statycznej wytrzymałości na przebicie
Języki publikacji
EN
Abstrakty
EN
This study comparatively presents the static puncture property of different structures of intra-/inter-laminar reinforced hybrid composites via needle punching and thermal bonding techniques. The tensile and bursting properties of two composites with inter-laminar reinforcement by needle-punching and inter-and-intra- laminar reinforcement by both needle punching and using Kevlar fibres were also evaluated comparatively. The significance of process parameters including the low-melting PET fibre content, take-up speed of the punching machine, the plied orientation between the nonwoven and fabric and thermal bonding on the static puncture resistance was firstly investigated to seek out the significant parameters. The effects of significant processing parameters on static puncture and mechanical properties were explored afterwards. The research result shows that the plied orientation, low-melting PET content and thermal bonding affect the static puncture resistance most significantly. The maximum tensile strength and bursting strength occurred when hybrid composites after thermal bonding were composed of parallel-plied nonwovens and 90°-orientated glass fabric, as well as 70 wt% low-melting PET fibres. Recycled Kevlar fibre reinforcement dissipates additional static puncture resistance, and makes the static puncture resistance higher, as well as the tensile and bursting strengths for resultant hybrid fibre composites. Employing recycled Kevlar fibres is economical for the fabrication of hybrid composites. Diversified economical hybrid composites will be applied as a wall interlayer or garment interlining in the future.
PL
Przedstawiono porównawcze omówienie statycznej wytrzymałości na przebicie różnych hybrydowych kompozytowych wzmocnionych struktur laminarnych. Badano wytrzymałość na rozciąganie i przerwanie różnych wariantów kompozytów zarówno igłowanych jak i łączonych termicznie, w tym takich, w których stosowano do wzmocnienia włókna Kevlar. Badano istotność wpływu różnych parametrów na statyczną wytrzymałość na przebicie. Stwierdzono znaczny wpływ orientacji igłowania i zawartości niskotopliwego PET.
Rocznik
Strony
84--91
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • School of Textiles, Tianjin Polytechnic University, Tianjin, P. R. China
  • Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tianjin Polytechnic University, Tianjin, P. R. China
autor
  • School of Textiles, Tianjin Polytechnic University, Tianjin, P. R. China
autor
  • Institute of Biomedical Engineering and Material Science, Central Taiwan University of Science and Technology, Taichung, Taiwan R. O. C.
autor
  • Department of Materials and Textiles, Oriental Institute of Technology, NewTaipei City, Taiwan R. O. C.
autor
  • Department of Fashion Design and Merchandising, Shih Chien University Kaohsiung Campus, Kaohsiung, Taiwan R. O. C.
autor
  • School of Textiles, Tianjin Polytechnic University, Tianjin, P. R. China, jhlin@fcu.edu.tw
  • Laboratory of Fibre Application and Manufacturing, Department of Fibre and Composite Materials, Feng Chia University, Taichung, Taiwan R. O. C.
  • School of Chinese Medicine, China Medical University, Taichung, Taiwan R. O. C.
  • Department of Fashion Design, Asia University, Taichung, Taiwan R. O. C.
Bibliografia
  • 1. Černák M. Surface Modification of Polypropylene Nonwoven after Plasma Activation at Atmospheric Pressure. Fibres and Textiles in Eastern Europe 2007; 15, 5-6(64-65): 64-65.
  • 2. Hargitai H, Rácz I and Anandjiwala R D. Development of HEMP Fiber Reinforced Polypropylene Composites. Journal of Thermoplastic Composites 2008; 21, 2: 165-174.
  • 3. Niu H, Jiao X and Wang R, et al. Direct Manufacturing of Flax Fibers Reinforced Low Melting Point PET Composites From Nonwoven Mats. Fibers and Polymers 2010; 11, 2: 218-222.
  • 4. Li TT, Lou CW, Lin MC, et al. Processing Technique and Performance Evaluation of High-Modulus Organic/Inorganic Puncture-Resisting Composites. Fibres and Textiles in Eastern Europe 2014; 22, 6(108): 75-80.
  • 5. Rawal A and Anandjiwala R. Comparative Study Between Needlepunched Nonwoven Geotextile Structures Made From Flax and Polyester Fibres. Geotextiles and Geomembranes 2007; 25: 61-65.
  • 6. Salinier A. and Boczkowska A. Non-Woven Veils Manufactured from Polyamides Doped with Carbon Nanotubes. Polymer 2013; 21, 6:45-49.
  • 7. Dasdemir M, Maze B and Anantharamaiah N, et al., Formation of Novel Thermoplastic Composites Using Bicomponent Nonwovens As A Precursor. Journal of Materials Science 2011;46, 10: 3269-3281.
  • 8. Jeon SY, Na WJ, Choi YO, et al. In Situ Monitoring of Structural Changes in Nonwoven Mats Under Tensile Loading Using X-Ray Computer Tomography. Composites Part A-Applied Science and Manufacturing 2014; 63: 1-9.
  • 9. Sayeed MMA, Rawal A, Ona l L, et al. Mechanical Properties of Surface Modified Jute Fiber/Polypropylene Nonwoven Composites. Polymer Composites 2014, 35, 6: 1044-1050.
  • 10. John MJ and Anandjiwala RD. Recent Developments in Chemical Modification and Characterization of Natural Fiber‐Reinforced Composites. Polymer Composites, 2008; 29, 2: 187-207.
  • 11. Lee SH and Kang TJ. Mechanical and Impact Properties of Needle Punched Nonwoven Composites. Journal of Composite Materials 2000; 34, 10: pp.816-840.
  • 12. Hao A, Zhao H and Chen JY. Kenaf/Polypropylene Nonwoven Composites: The Influence of Manufacturing Conditions on Mechanical, Thermal, and Acoustical Performance. Composites Part B-Engineering, 2013; 54: 44-51.
  • 13. Sharma SK and Sankar BV. Effect of Stitching on Impact and Interlaminar Properties of Graphite/Epoxy Laminates. Journal of Thermoplastic Composite Materials 1997; 10, 3: 241-253.
  • 14. Bilisik K and Yolacan G. Experimental Determination of Bending Behavior of Multilayered and Multidirectionally-Stitched E-Glass Fabric Structures for Composites. Textile Research Journal 2012; 82,10:1038-1049.
  • 15. Tan KT, Yoshimura A, Watanabe N, et al., Effect of Stitch Density and Stitch Thread Thickness on Damage Progression and Failure Characteristics of Stitched Composites under Out-Of-Plane Loading. Composites Science and Technology, 2013; 74: 194-204.
  • 16. Yudhanto A, Watanabe N, Iwahori Y, et al., Effect of Stitch Density on Tensile Properties and Damage Mechanisms of Stitched Carbon/Epoxy Composites. Composites Part B-Engineering 2013; 46: 151-165.
  • 17. Yudhanto A, Watanabe N, Iwahori Y, et al. Compression Properties and Damage Mechanisms of Stitched Carbon/Epoxy Composites. Composites Science and Technology 2013; 86: 52-60,.
  • 18. Yekani Fard M, Sadat SM, Raji BB, et al. Damage Characterization of Surface and Sub-Surface Defects in Stitch-Bonded Biaxial Carbon/Epoxy Composites. Composites Part B-Engineering, 2014; 56: 821-829.
  • 19. Mayo Jr JB, Wetzel ED, Hosur MV, et al. Stab and Puncture Characterization of Thermoplastic-Impregnated Aramid Fabrics. International Journal of Impact Engineering, 2009; 36: 1095-1105.
  • 20. Kim H and Nam I. Stab Resisting Behavior of Polymeric Resin Reinforced P-Aramid Fabrics. Journal of Applied Polymer Science2012; 123, 5: 2733-2742.
  • 21. Firouzi D, Foucher DA and Bougherara H. Nylon-Coated Ultra High Molecular Weight Polyethylene Fabric for Enhanced Penetration Resistance. Journal of Applied Polymer Science, 2014; 131, 11, DOI: 10.1002/APP.40350,.
  • 22. Wang R, Li TT, Lou CW, et al. Effect of Process Parameters on Puncture Resistance of Composites by Needle Punching and Thermal Bonding Techniques. Materials and Manufacturing Processes 2013; 28:1029-1035.
  • 23. Li TT, Wang R, Lou CW, et al., Mechanical and Physical Properties of Puncture-Resistance Plank Made of Recycled Selvages. Fibers and Polymers 2013; 14, 2: 258-265.
  • 24. Hou L, Sun B and Gu B. An Analytical Model for Predicting Stab Resistance of Flexible Woven Composites. Applied Composite Materials, 2013; 20, 4: 569-585.
  • 25. Termonia Y. Puncture Resistance of Fibrous Structures. International Journal of Impact Engineering2006; 32: 1512-1520.
  • 26. Chu CY, Yan SJ. The Relation Between The Mechanical Anisotropy and The Bursting Strength for Nonwoven Fabrics. Journal of China Textile University 1995, 21: 1-9
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01778624-e032-4a69-96db-8861408ab3a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.