PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the artificial neural networks for prediction of hardness of alloyed copper

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the work is to employ the artificial neural networks for prediction of hardness of the alloyed copper like CuTi, CuFe, CuCr and CuNiSi. Design/methodology/approach: It has been assumed that the artificial neural networks can be used to assign the relationship between the chemical compositions of alloyed copper, temperature and time of solution heat treatment, degree of cold working deformation and temperature and time of ageing. In order to determine the relationship it has been necessary to work out a suitable calculation model. It has been proved that employment of genetic algorithm to selection of input neurons can be very useful tool to improve artificial neural network calculation results. The attempt to use the artificial neural networks for predicting the effect of the chemical composition and parameters of heat treatment and cold working deformation degree on the hardness succeeded, as the level of the obtained results was acceptable. Findings: Artificial neural networks, can be applied for predicting the effect of the chemical composition, parameters of heat treatment and cold working deformation degree on the hardness. Research limitations/implications: Worked out model should be used for prediction of hardness only in particular groups of alloyed copper, mostly because of the discontinuous character of input data. Practical implications: The results of research make it possible to calculate with a certain admissible error the hardness value basing on combinations of concentrations of the particular elements, heat treatment parameters and cold working deformation degree. Originality/value: In this paper it has been presented an original trial of prediction of the required hardness of the alloyed copper like CuTi, CuFe, CuCr and CuNiSi.
Rocznik
Strony
529--535
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] J. Dutkiewicz, Spinodal decomposition, ordering, and discontinuous precipitation in deformed and aged copper-titanium alloys, Metals Technology 5 (1978) 333-400.
  • [2] A. Datta, W.A. Soffa, The structure and properties of age hardened Cu-Ti alloys, Acta Metallurgica 24/11 (1976) 987-1001.
  • [3] J. A. Cornie, A. Datta, W. A. Soffa, An electron microscopy study of precipitation in Cu-Ti sideband alloys, Metallurgical Transactions 4 (1973) 727-733.
  • [4] W. Ozgowicz, E. Kalinowska-Ozgowicz, B. Grzegorczyk, The influence of the temperature of tensile test on the structure and plastic properties of copper alloy type CuCr1Zr, Journal of Achievements in Materials and Manufacturing Engineering 29/2 (2008) 123-136.
  • [5] W. Ozgowicz, E. Kalinowska-Ozgowicz, B. Grzegorczyk, The microstructure and mechanical properties of the alloy CuZn30 after recrystallizion annealing, Journal of Achievements in Materials and Manufacturing Engineering 40/1 (2010) 15-24.
  • [6] S. Nagarjuna, K. Balasubramanian, D. S. Sarma, Effect of Cold Work on Percipitation Hardening of Cu-4.5 mas. %Ti alloy, Materials Transactions 36/ 8 (1995) 1058-1066.
  • [7] R. Markandeya, S. Nagarjuna, D.S. Sarma, Characterization of prior cold worked and age hardened Cu-3Ti-1Cd alloy, Materials Characterization 54 (2005) 360-369.
  • [8] S. Nagarjuna, K. Balasubramanian, D. S. Sarma, Effect of prior cold work on mechanical properties and structure of an age-hardened Cu-1.5wt% Ti alloy, Journal of Materials Science 32 (1997) 3375-3385.
  • [9] Z. Rdzawski, J. Stobrawa, W. Głuchowski, J. Konieczny, Thermomechanical processing of CuTi4 alloy, Journal of Achievements in Materials and Manufacturing Engineering 42/1-2 (2010) 9-25.
  • [10] J. Konieczny, Z. Rdzawski, J. Stobrawa, W. Głuchowski, Hardness and electrical conductivity of cold rolled and aged CuTi4 alloy, Proceeding of the Ukraine-Poland VIII Conference of Young Scientists "Mechanics and Computer Science”, Chmielnicki, 2011, 94-95.
  • [11] Z. Rdzawski, W. Głuchowski, J. Konieczny, Microstructure and properties of CuTi4 alloy, Proceeding of the 13th International Material Symposium, Denizli, 2010, 955-962.
  • [12] J. Konieczny, Z. Rdzawski, Misorientation in rolled CuTi4 alloy, Archives of Materials Science and Engineering 52/1 (2011) 5-12.
  • [13] S. Nagarjuna, M. Srinivas, Grain refinement during high temperature tensil testing of prior cold worked and peak aged Cu-Ti alloys, Evidence of superplasticity, Materials Science and Engineering A 498 (2008) 468-474.
  • [14] S. Nagarjuna, U. Chinta Babu, Partha Ghosal, Effect of cryo-rolling on age hardening of Cu-1.5Ti alloy, Materials Science and Engineering A 491 (2008) 331-337.
  • [15] J. Konieczny, Z. Rdzawski, Structure of rolled CuTi4 alloy, Journal of Achievements in Materials and Manufacturing Engineering 50/1 (2012) 26-39.
  • [16] S. Semboshi, T. Al.-Kassab, R. Gemma, R. Kirchheim, Microstructural evolution of Cu-1 at% Ti alloy aged in a hydrogen atmosphere ant its relation with the electrical conductivity, Ultramicroscopy 109 (2009) 593-598.
  • [17] S. Semboshi, T. Nishida, H. Numakura, Microstructure and mechanical properties of Cu-3% at. Ti alloy aged in a hydrogen atmosphere, Materials Science and Engineering A 517 (2009) 105-113.
  • [18] A.A. Hameda, L. Błaż, Microstructure of hot-deformed Cu-3.45 wt.% Ti alloy, Materials Science and Engineering A 254 (1998) 83-89.
  • [19] A.A. Hameda, L. Bałaż, Flow softening during hot compression of Cu-3.45 wt.% Ti alloy, Scripta Materialia 37/12 (1997) 1987-1993.
  • [20] T.J. Konno, R. Nishio, S. Semboshi, T. Ohsuna. E. Okunishi, Aging behavior of Cu-Ti-Al alloy observed by transmission electron microscopy, Journal of Materials Science 43 (2008) 3761-3768.
  • [21] R. Markandeya, S. Nagarjuna, D.S. Sarma, Precipitation Hardening of Cu-3Ti-1Cd Alloy, Journal of Materials Engineering and Performance 16 (2007) 640-646.
  • [22] R. Markandeya, S. Nagarjuna, D.S. Sarma, Effect of priori cold work on age hardening of Cu-4Ti-1Cr alloy, Materials Science and Engineering A 404 (2005) 305-313.
  • [23] V. Lebreton, D. Pachoutinski, Y. Bienvenu, An investigation of microstructure and mechanical properties in Cu-Ti-Sn alloys rich in copper, Materials Science and Engineering A 508 (2009) 83-92.
  • [24] Z. Rdzawski, J. Stobrawa, Thermomechanical processing of Cu-Ni-Si-Cr-Mg alloy, Materials Science and Technology 9/2 (1993) 142-150.
  • [25] D. Božić, O. Dimčić, B. Dimčić, I. Cvijović, V. Rajković, The combination of precipitation and dispersion hardening In powder metallurgy produced Cu-Ti-Si alloy, Materials Characterization 59 (2008) 1122-1126.
  • [26] Z.M. Rdzawski, J. Stobrawa, W. Głuchowski, Structure and properties of CuFe2 alloy, Journal of Achievements in Materials and Manufacturing Engineering 33/1 (2009) 7-18.
  • [27] J. Trzaska, Application of neural networks for prediction of hardness and volume fractions of structural components in constructional steels cooled from the austenitizing temperature, Materials Science Forum 437 (2003) 359-362.
  • [28] J. Trzaska, W. Sitek, L.A. Dobrzański, Selection method of steel grade with required hardenability, Journal of Achievements in Materials and Manufacturing Engineering 17/1-2 (2006) 289-292.
  • [29] W. Sitek, J. Trzaska, L.A. Dobrzański, Evaluation of chemical composition effect on materials properties using AI methods, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 379-383.
  • [30] J. Konieczny, L.A. Dobrzański, B. Tomiczek, Employment of the artificial neural networks for prediction of magnetic properties of the metallic amorphous alloys, International Journal of Computational Materials Science and Surface Engineering 1/6 (2007) 650-662.
  • [31] J. Konieczny, L.A. Dobrzański, B. Tomiczek, J. Trzaska, Application of the artificial neural networks for prediction of magnetic saturation of metallic amorphous alloys, Archives of Materials Science and Engineering 30/2 (2008) 106-108.
  • [32] L.A. Dobrzański, R. Honysz, Application of artificial neural networks in modelling of normalized structural steels mechanical properties, Journal of Achievements in Materials and Manufacturing Engineering 32/1 (2009) 37-45.
  • [33] L.A. Dobrzański, R. Honysz, Computer modelling system of the chemical composition and treatment parameters influence on mechanical properties of structural steels, Journal of Achievements in Materials and Manufacturing Engineering 35/2 (2009) 138-145.
  • [34] B. Janowski, Application of hysteresis model and artificial neural network for modelling of hard magnetic composites properties, Proceeding of the XIV International PhD Workshop, 2012, 434-437.
  • [35] J. Konieczny, Z. Rdzawski, Influence of cold working on microstructure and properties of annealing alloyed copper, Proceeding of the 14th International Materials Symposium, Denizli, 2012, 633-641.
  • [36] S. Nagarjuna, K. Balasubramanian, D.S. Sarma, Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu-Ti alloys, Journal of Materials Science 34 (1999) 2929-2942.
  • [37] S. Nagarjuna, K. Balasubramanian, Effect of prior cold work on mechanical properties and structure of an age-hardened Cu-1.5wt% Ti alloy, Journal of Materials Science 32 (1997) 3375-3385.
  • [38] H. Fernee, J. Nairn, A. Atrens, Cold worked Cu-Fe-Cr alloys, Journal Of Materials Science 36 (2001) 5497-5510.
  • [39] M. Janaszek, D. R. Mańkowski, J. Kozdój, MLP artificial neural networks in predicting the yield if spring barley, Bulletin of the Institute of Plant Breeding and Acclimatization 259 (2011) 93-112 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01728a2c-d997-4949-9979-42efa0f9d9d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.