PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive Rider Feedback Artificial Tree Optimization-Based Deep Neuro-Fuzzy Network for Classification of Sentiment Grade

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sentiment analysis is an efficient technique for expressing users’ opinions (neutral, negative or positive) regarding specific services or products. One of the important benefits of analyzing sentiment is in appraising the comments that users provide or service providers or services. In this work, a solution known as adaptive rider feedback artificial tree optimization-based deep neuro-fuzzy network (RFATO-based DNFN) is implemented for efficient sentiment grade classification. Here, the input is pre-processed by employing the process of stemming and stop word removal. Then, important factors, e.g. SentiWordNet-based features, such as the mean value, variance, as well as kurtosis, spam word-based features, term frequency-inverse document frequency (TF-IDF) features and emoticon-based features, are extracted. In addition, angular similarity and the decision tree model are employed for grouping the reviewed data into specific sets. Next, the deep neuro-fuzzy network (DNFN) classifier is used to classify the sentiment grade. The proposed adaptive rider feedback artificial tree optimization (A-RFATO) approach is utilized for the training of DNFN. The A-RFATO technique is a combination of the feedback artificial tree (FAT) approach and the rider optimization algorithm (ROA) with an adaptive concept. The effectiveness of the proposed A-RFATO-based DNFN model is evaluated based on such metrics as sensitivity, accuracy, specificity, and precision. The sentiment grade classification method developed achieves better sensitivity, accuracy, specificity, and precision rates when compared with existing approaches based on Large Movie Review Dataset, Datafiniti Product Database, and Amazon reviews.
Rocznik
Tom
Strony
37--50
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Department of Computer Science and Engineering, GITAM School of Technology, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
  • Department of Computer Science and Engineering, GITAM School of Technology, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
Bibliografia
  • [1] B. Liu, Sentiment Analysis and Opinion Mining. Springer Cham, serie Synthesis Lectures on Human Language Technologies, 2012 (ISBN: 9783031010170 , https://doi.org/10.1007/978-3-031-02145-9).
  • [2] F. Chen, Z. Yuan, and Y. Huang, “Multi-source data fusion for aspect-level sentiment classification”, Knowledge-Based Systems, vol. 187, pp. 104831, 2020 (https://doi.org/10.1016/j.knosys.2019.07.002).
  • [3] Y. Wang, M. Huang, Z. Zhu, and L. Zhao, “Attention-based LSTM for aspect-level sentiment classification”, Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 606– 615, 2016 (https://doi.org/10.18653/v1/D16-1058).
  • [4] C. Chen, R. Zhuo, and J. Ren, “Gated recurrent neural network with sentimental relations for sentiment classification”, Information Sciences, vol. 502, pp. 268–278, 2019 (https://doi.org/10.1016/j.ins.2019.06.050).
  • [5] X. Li X and W. Lam, “Deep multi-task learning for aspect term extraction with memory interaction”, Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2886–2892, 2017 (https://doi.org/10.18653/v1/D17-1310).
  • [6] E. Cambria, S. Poria, A. Gelbukh, and M. Thelwall, “Sentiment analysis is a big suitcase”, IEEE Intelligent Systems, vol. 2, no 6, pp. 74–80 , 2017 (https://doi.org/10.1109/MIS.2017.4531228).
  • [7] L. Yue, W. Chen, X. Li, W. Zuo, and M. Yin, “A survey of sentiment analysis in social media”, Knowledge and Information Systems, vol. 60, no. 2, pp. 617– 663, 2019 (https://doi.org/10.1007/s10115-018-1236-4).
  • [8] M.U. Salur and I. Aydin, “A novel hybrid deep learning model for sentiment classification”, IEEE Access, vol. 8, pp. 58080– 93, 2020 (https://doi.org/10.1109/ACCESS.2020.2982538).
  • [9] Z. Wang and Z. Lin, “Optimal feature selection for learning-based algorithms for sentiment classification”, Cognitive Computation, vol. 12, no. 1, pp. 238–248 , 2020 (https://doi.org/10.1007/s12559-019-09669-5).
  • [10] C. Zhang, Q. Li, and D. Song, “Aspect-based sentiment classification with aspect-specific graph convolutional networks”, Proceedings of the 2019 Conf. on Empirical Methods in Natural Language Processing and the 9th International Joint Conf. on Natural Language Processing (EMNLP-IJCNLP), pp. 4568– 4578, 2019 (https://doi.org/10.18653/v1/D19-1464)
  • [11] A. Abdi, S.M. Shamsuddin, S. Hasan, and J. Piran, “Deep learningbased sentiment classification of evaluative text based on multi-feature fusion”, Information Processing & Management, vol. 56, no. 4, pp. 1245 –1259, 2019 (https://doi.org/10.1016/j.ipm.2019.02.018).
  • [12] Y. Zhang, Z. Zhang, D. Miao, and J. Wang, “Three-way enhanced convolutional neural networks for sentence-level sentiment classification”, Information Sciences, vol. 477, pp. 55 –64, 2019 (https://doi.org/10.1016/j.ins.2018.10.030).
  • [13] J. Serrano-Guerrero, J.A. Olivas, F.P. Romero, and E. Herrera-Viedma, “Sentiment analysis: A review and comparative analysis of web services”, Information Sciences, vol. 311, pp. 18– 38, 2015 (https://doi.org/10.1016/j.ins.2015.03.040)
  • [14] S. Zhang, X. Xu, Y. Pang, and J. Han, “Multi-layer attention based CNN for target-dependent sentiment classification”, Neural Processing Letters, vol. 51, no. 3, pp. 2089– 2103, 2020 (https://doi.org/10.1007/s11063-019-10017-9).
  • [15] C. Zhao, S. Wang, and D. Li, “Multi-source domain adaptation with joint learning for cross-domain sentiment classification”, Knowledge-Based Systems, vol. 191, pp. 105254 , 2020 (https://doi.org/10.1016/j.knosys.2019.105254).
  • [16] H. Chen, M. Sun, C. Tu, Y. Lin, and Z. Liu, “Neural sentiment classification with user and product attention”, Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1650– 1659, 2016 (https://doi.org/10.18653/v1/D16-1171).
  • [17] M. Gangappa, K.C. Mai C, and P. Sammulal, “Enhanced crow search optimization algorithm and hybrid NN-CNN classifiers for classification of land cover images”, Multimedia Research, vol. 2 , no. 3, pp. 12–22, 2019 (https://doi.org/10.46253/j.mr.v2i3.a2).
  • [18] S. Vasamsetti and C. Santhirani, “Hybrid particle swarm optimization-deep neural network model for speaker recognition”, Multimedia Research, vol. 3, no. 1, pp. 1–10, 2020 (https://doi.org/10.46253/j.mr.v3i1.a1).
  • [19] G. Parente, T. Gargano, G. Ruggeri, M. Maffi, S. D’Antonio, E. Sacchet, and M. Lima, “Anastomotic stricture definition after esophageal atresia repair: role of endoscopic stricture index”, Journal of Surgical Research, vol. 257, pp. 572– 578, 2021 (https://doi.org/10.1016/j.jss.2020.08.035).
  • [20] G. Parente, T. Gargano, S. Pavia, C. Cordola, M. Vastano, Baccelli, G. Gallotta, L. Bruni, A. Corvaglia, and M. Lima, “Pyelonephritis in pediatric uropathic patients: Differences from community-acquired ones and therapeutic protocol considerations. A 10 -year single-center retrospective study”, Children, vol. 8, no. 6, 2021 (DOI: 10.3390/chil-dren8060436).
  • [21] R.K. Bakshi, N. Kaur, R. Kaur, and G. Kaur, “Opinion mining and sentiment analysis”, Proceedings of 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 452–455, 2016.
  • [22] D. Ma, S. Li, X. Zhang, and H. Wang, “Interactive attention networks for aspect-level sentiment classification”, Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI- 17), pp. 4068–4074, 2017 (https://www.ijcai.org/proceedings/2017/0568.pdf).
  • [23] R. John Martin, “EEG Feature Engineering Methods-A Comprehensive Review”, Multimedia Research, vol. 5, no. 2, 2022 (URL: https://publisher.resbee.org/mr/archive/v5i2/a5.html).
  • [24] S.A.J. Al Raisi, “A review on congestion management methodologies and its applications”, Journal of Computational Mechanics, Power System and Control, vol. 3, no. 3, 2020 (https://doi.org/10.46253/jcmps.v3i3.a3).
  • [25] M. Adil, R. Madani, S. Tavakkol, and A. Davoudi, “A First-Order Numerical Algorithm without Matrix Operations”, arXiv preprint arX-iv:2203.05027, 2022 (https://arxiv.org/pdf/2203.05027).
  • [26] L. Dong, F. Wei, C. Tan, D. Tang, M. Zhou, and K. Xu, “Adaptive recursive neural network for target-dependent twitter sentiment classification”, Proceedings of the 52 nd Annual Meeting of the Association for Computational Linguistics, vol. 2, pp. 49–54, 2014 (https://doi.org/10.3115/v1/P14-2009).
  • [27] K.S. Tai, R. Socher, C.D. Manning, “Improved semantic representations from tree-structured long short-term memory networks”, Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conf. on Natural Language Processing, vol. 1, pp. 1556–1566 , 2015 (https://doi.org/10.3115/v1/P15-1150).
  • [28] H. Kim and Y.S. Jeong, “Sentiment classification using convolutional neural networks”, Applied Sciences, vol. 9, no. 11, pp. 2347, 2019 (https://doi.org/10.3390/app9112347).
  • [29] X. Fu, Y. Wei, F. Xu, T. Wang, Y. Lu, J. Li, and J.Z. Huang, “Semi-supervised aspect-level sentiment classification model based on variational autoencoder”, Knowledge-Based Systems, vol. 171, pp. 81 –92, 2019 (https://doi.org/10.1016/j.knosys.2019.02.008)
  • [30] P. Zhao, L. Hou, and O. Wu, “Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification”, Knowledge-Based Systems, vol. 193, pp. 105443 , 2020 (https://doi.org/10.1016/j.knosys.2019.105443).
  • [31] K. Zhang, M. Jiao, X. Chen, Z. Wang, B. Liu, and L. Liu, “SC-BiCapsNet: a sentiment classification model based on bi-channel capsule network”, IEEE Access, vol. 7, pp. 171801– 171713, 2019 (https://doi.org/10.1109/ACCESS.2019.2953502).
  • [32] N. Jin, J. Wu, X. Ma, K. Yan, Y. Mo, “Multi-task learning model based on multi-scale CNN and LSTM for sentiment classification”, IEEE Access, vol. 8, pp. 77060 –77072 , 2020 (https://doi.org/10.1109/ACCESS.2020.2989428).
  • [33] B. Ohana and B. Tierney, “Sentiment classification of reviews using SentiWordNet”, 9th IT&T Conference, 2009 (https://doi.org/10.21427/D77S56).
  • [34] N.M.K. Saeed, N.A. Helal, N.L. Badr, and T.F. Gharib, “The impact of spam reviews on feature-based sentiment analysis”, Proceedings of 13th International Conference on Computer Engineering and Systems (ICCES), 2018 (https://doi.org/10.1109/ICCES.2018.8639343).
  • [35] S. Javaid, M. Abdullah, N. Javaid, T. Sultana, J. Ahmed, and N.A. Sattar, “Towards buildings energy management: using seasonal schedules under time of use pricing tariff via deep neuro-fuzzy optimizer”, Proceedings of 15th International Wireless Communications & Mobile Computing Conference (IWCMC), 2019 , pp. 1594– 1599 (https://doi.org/10.1109/IWCMC.2019.8766673).
  • [36] –, Large movie review dataset taken from (http://ai.stanford.edu/~amaas/data/sentiment), accessed on Dec. 2020.
  • [37] –, Consumer Reviews of Amazon Products dataset taken from (https://www.kaggle.com/datafiniti/consumer-reviews-of-amazon-products), accessed on Dec. 2020.
  • [38] –, Amazon Reviews for Sentiment Analysis dataset taken from, 2022 (https://www.kaggle.com/datasets/bittlingmayer/amazonreviews), accessed on Nov. 2022
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0170cded-5911-4a53-8812-955f203b2eec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.