PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On e-I-open sets, e-I-continuous functions and decomposition of continuity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we introduce the notations of e-I-open sets and strong B*I -set to obtain a decomposition of continuing via idealization. Additionally, we investigate properties of e-I-open sets and strong B*I -set. Also we studied some more properties of e-I-open sets and obtained several characterizations of e-I-continuous functions and investigate their relationship with other types of functions.
Rocznik
Tom
Strony
15--31
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
  • School of Mathematical Sciences, Faculty of Science and Technology Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor DE, Malaysia
autor
  • Department of Mathematics, Faculty of Science, Al AL-Bayat University, P.O.Box 130095, Mafraq25113, Jordan
Bibliografia
  • [1] M.E. Abd El monsef, S.N. El-deeb and R.A.Mahmoud, β-open sets and β-continuous mappings, Bull. fac. sci. Assiut Univ., 12 (1983), 77-90.
  • [2] F. G. Arenas, J. Dontchev and M. L. Puertas, Idealization of some weak separation axioms, Acta Math. Hungar., 89 (1-2) (2000), 47- 53.
  • [3] J. Dontchev, Strong B-sets and another decomposition of continuity, Acta Math. Hungar., 75 (1997), 259-265.
  • [4] E. Ekici, On a-open sets, A*-sets and decompositions of continuity and supercontinuity, Annales Univ. Sci. Budapest., 51 (2008), 39 - 51.
  • [5] E. Ekici and T. Noiri, On subsets and decompositions of continuity in ideal topological spaces, Arab. J. Sci. Eng. Sect. 34(2009), 165-177.
  • [6] E. Ekici and G.B. Navalagi, δ-Semicontiuous Functions, Math. Forum, 17 (2004-2005), 29-42
  • [7] E. Ekici, On e-open sets, DP*-sets and DPE*-sets and decompositions of continuity, Arabian J. Sci. Eng. Vol 33, Number 2A (2008), 269-282.
  • [8] E. Hatir, on decompositions of continuity and complete continuity in ideal topological spaces, submiteed
  • [9] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96 (4) (2002), 341-349.
  • [10] S. Jafari and T. Noiri, Contra-super-continuous functions, Annales Universitatis Scientiarum Budapestinensis, vol. 42, (1999), 27-34.
  • [11] D. Jankovic, T. R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295 - 310.
  • [12] K. Kuratowski, Topology, Vol. I. NewYork: Academic Press (1966).
  • [13] M. N. Mukherjee, R. Bishwambhar and R. Sen, On extension of topological spaces in terms of ideals, Topology and its Appl., 154 (2007), 3167-3172.
  • [14] J. H. Park, B. Y. Lee and M. J. Son, On δ-semiopen sets in topological space, J. Indian Acad. Math., 19 (1) (1997), 59-67.
  • [15] S. Raychaudhuri and M.N. Mukherjee, On δ-Almost Continuity and δ-Preopen Sets, Bull. Inst. Math. Acad.Sin., 21 (1993), 357-366.
  • [16] M. Mršević, On pairwise R0 and pairwise R1 bitopological spaces, Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie. Nouvelle Série, vol. 30(78), no. 2, (1986), 141-148.
  • [17] A. A. Nasef and A. S. Farrag, Completely b-irresolute functions, Proceedings of the Mathematical and Physical Society of Egypt, no. 74 (1999), 73-86.
  • [18] A. A. Nasef and R. A. Mahmoud, Some applications via fuzzy ideals, Chaos, Solitons and Fractals, 13 (2002), 825 - 831.
  • [19] O. Njyastad, On some clasess of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
  • [20] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D.dissertation, University of California, Santa Barbara, Calif, USA, 1967.
  • [21] D.V. Rančin, Compactness modulo an ideal, Soviet Math. Dokl., 13 (1) (1972), 193197
  • [22] P. Samuels, A topology formed from a given topology and ideal, J. London Math. Soc., 10 (1975), 409-416.
  • [23] M.H. Stone, Application of the Theory of Boolean Rings to General Topology, Trans. Amer. Math. Soc., 41 (1937), 375-481.
  • [24] R. Vaidyanathaswamy, The localization theory in set-topology, Proc. Indian Acad. Sci., 20 (1945), 51-61
  • [25] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company (1960).
  • [26] N.V. Veličko, H-Closed Topological Spaces, Amer. Math. Soc. Trans. 78(2) (1968), 103 - 118.
  • [27] S. Willard, General topology, Addition-Wesley Pub. Co., Massachusetts, 1970.
  • [28] S. Yüksel, A. Açikgöz and T. Noiri, On α-I-continuous functions, Turk. J. Math., 29(2005), 39-51.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-016ee296-f93a-4083-b5f1-f3fe13a3516f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.