PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Is there a common alpha-efficiency in polymineral samples measured by various infrared stimulated luminescence protocols?

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dating of polymineral silt-sized samples by use of post-infrared infrared stimulated luminescence (pIRIR) protocols at elevated temperature has recently gained attraction due to assumed lower rates of anomalous fading. The α-efficiency (or a-value) associated with the pIRIR signals as an integral part of age calculation has, however, not yet been sufficiently constrained. Here we present a set of 65 a-values determined for 47 samples collected across Europe with two different IRSL protocols in two laboratories. By testing the basic preconditions for application of the single-aliquot regeneration (SAR) procedure to constrain a-values and by comparing SAR results to a-values obtained by multiple-aliquot protocols, we demonstrate that SAR-derived a-values are reliable for the majority of samples. While aliquot size and signal resetting mode prior to α-regeneration do not appear to affect the resulting a-value, we detected significant differences in mean a-values measured in the two laboratories. For the pIRIR290 signal, a-values average to 0.085 ± 0.010 (Bayreuth) and 0.101 ± 0.014 (Cologne), while a modified SAR protocol yields 0.081 ± 0.008 (Bayreuth). Whereas provenance-specific differences in a-values might be masked by overall scatter, systematic offsets between laboratories are attributed to technical issues such as heater and source calibration. Based on the present data set, use of the same routine dating equipment is strongly advised for both dose and a-value measurements.
Wydawca
Czasopismo
Rocznik
Strony
160--172
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
  • Chair of Geomorphology & BayCEER, University of Bayreuth, 95440 Bayreuth, Germany
autor
  • Department of Geography, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
  • Institute of Geography, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
autor
  • Chair of Geomorphology & BayCEER, University of Bayreuth, 95440 Bayreuth, Germany
Bibliografia
  • 1. Aitken M, 1985a. Thermoluminescence dating. Academic Press, London.
  • 2. Aitken M, 1985b. Alpha particle effectiveness: numerical relationship between systems. Ancient TL3: 22–25.
  • 3. Aitken M and Bowman S, 1975. Thermoluminescence dating: Assessment of alpha particle contribution. Archaeometry17: 132–138.
  • 4. Biswas R, Williams M, Raj R, Juyal N and Singhvi A, 2013. Methodological studies on luminescence dating of volcanic ashes. Quaternary Geochronology17: 14–25.
  • 5. Bösken J, Klasen N, Zeeden C, Obreht I, Marković SB, Hambach U and Lehmkuhl F, 2017. New luminescence-based geochronology framing the last two glacial cycles at the southern limit of European Pleistocene loess in Stalać.Geochronometria44: 150–161.
  • 6. Bösken J, Sümegi P, Zeeden C, Klasen N, Gulyás S and Lehmkuhl F, in press (a). Investigating the last glacial Gravettian site ‘Ságvár Lyukas Hill’ (Hungary) and its paleoenvironmental and geochronological context using a multi-proxy approach. Palaeogeography, Palaeoclimatology, Palaeoecology.
  • 7. Bösken J, Obreht I, Zeeden C, Klasen N, Hambach U, Sümegi P and Lehmkuhl F, in press (b). High-resolution proxy data from the MIS3/2 transition recorded in northeastern Hungarian loess. Quaternary International.
  • 8. Buylaert J-P, Jain M, Murray AS, Thomsen KJ, Thiel C and Sohbati R, 2012. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas41: 435–451.
  • 9. Colarossi D, Duller GAT and Roberts H, 2018. Exploring the behaviour of luminescence signals from feldspars: Implications for the single aliquot regenerative dose protocol. Radiation Measurements109: 35–44.
  • 10. Duller GAT, 1992. Luminescence chronology of raised marine terraces, south-west north island, New Zealand. PhD thesis, University of Wales, Abersytwyth.
  • 11. Duller GAT, 2015. The Analyst software package for luminescence data: overview and recent improvements. Ancient TL33: 35–42.
  • 12. Faust D, Yanes Y, Willkommen T, Roettig C, Richter D, Richter D, v. Suchodoletz H and Zöller L, 2015. A contribution to the understanding of late Pleistocene dune sand-paleosol-sequences in Fuerteventura (Canary Islands). Geomorphology246: 290–304.
  • 13. Franklin AD and Hornyak WF, 1992. Normalization of inclusion size quartz TL data. Ancient TL10: 1–6.
  • 14. Jain M and Ankjærgaard C, 2011. Towards a non-fading signal in feldspar: Insight into charge transport and tunnelling from time-resolved optically stimulated luminescence. Radiation Measurements46: 292–309.
  • 15. Kenzler M, Tsukamoto S, Meng S, Thiel C, Frechen M and Hüneke H, 2015. Luminescence dating of Weichselian interstadial sediments from the German Baltic Sea coast. Quaternary Geochronology30: 251–256.
  • 16. Kreutzer S, Schmidt C, DeWitt R and Fuchs M, 2014. The a-value of polymineral fine grain samples measured with the post-IR IRSL protocol. Radiation Measurements69: 18–29.
  • 17. Li B and Li SH, 2011. Luminescence dating of K-feldspar from sediments: A protocol without anomalous fading correction.Quaternary Geochronology6: 468–479.
  • 18. Li B, Roberts RG and Jacobs Z, 2013. On the dose dependency of the bleachable and non-bleachable components of IRSL from K-feldspar: Improved procedures for luminescence dating of Quaternary sediments. Quaternary Geochronology17: 1–13.
  • 19. Mauz B, Packman S and Lang A, 2006. The alpha effectiveness in siltsized quartz: new data obtained by single and multiple aliquot protocols. Ancient TL24: 47–52.
  • 20. Murray AS and Mejdahl V, 1999. Comparison of regenerative-dose single-aliquot and multiple-aliquot (SARA) protocols using heated quartz from archaeological sites. Quaternary Science Reviews18: 223–229.
  • 21. Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements32: 57–73.
  • 22. Obreht I, Hambach U, Veres D, Zeeden C, Bösken J, Stevens T, Marković SB, Klasen N, Brill D, Burow C and Lehmkuhl F, 2017. Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for Modern Human dispersal. Scientific Reports7: 5848.
  • 23. Preusser F, Muru M and Rosentau A, 2014. Comparing different post-IR IRSL approaches for the dating of Holocene coastal foredunes from Ruhnu Island, Estonia. Geochronometria41: 342–351.
  • 24. Rees-Jones J, 1995. Optical dating of young sediments using fine-grain quartz. Ancient TL13: 9–14.
  • 25. Reimann T and Tsukamoto S, 2012. Dating the recent past (500 years) by post-IR IRSL feldspar – Examples from the North Sea and Baltic Sea coast. Quaternary Geochronology10: 180–187.
  • 26. Roettig C-B, Kolb T, Wolf D, Baumgart P, Richter C, Schleicher A, Zöller L and Faust D, 2017. Complexity of Quaternary aeolian dynamics (Canary Islands). Palaeogeography, Palaeoclimatology, Palaeoecology472: 146–162.
  • 27. Rorabacher DB, 1991. Statistical treatment for rejection of deviant values: critical values of Dixon’s ”Q” parameter and related subrange ratios at the 95% confidence level. Analytical Chemistry63: 139–146.
  • 28. Schatz A-K, Buylaert J-P, Murray AS, Stevens T and Scholten T, 2012. Establishing a luminescence chronology for a palaeosol-loess profile at Tokaj (Hungary): A comparison of quartz OSL and polymineral IRSL signals. Quaternary Geochronology10: 68–74.
  • 29. Schmidt ED, Tsukamoto S, Frechen M and Murray AS, 2014. Elevated temperature IRSL dating of loess sections in the East Eifel region of Germany. Quaternary International334–335: 141–154.
  • 30. Schmidt C, Schaarschmidt M, Kolb T, Buchel G, Richter D and Zoller L, 2017. Luminescence dating of Late Pleistocene eruptions in the Eifel Volcanic Field, Germany. Journal of Quaternary Science32: 628–638.
  • 31. Schmidt C, Friedrich J, Adamiec G, Chruscinska A, Fasoli M, Kreutzer S, Martini M, Panzeri L, Polymeris GS, Przegietka K, Valla PG, King GE and Sanderson DW, 2018. How reproducible are kinetic parameter constraints of quartz luminescence? An interlaboratory comparison for the 110°C TL peak. Radiation Measurements110: 14–24.
  • 32. Stevens T, Markovic SB, Zech M, Hambach U and Sümegi P, 2011. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle. Quaternary Science Reviews30: 662–681.
  • 33. Thiel C, Buylaert J-P, Murray AS, Terhorst B, Hofer I, Tsukamoto S and Frechen M, 2011. Luminescence dating of the Stratzing loess profile (Austria) - Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International234: 23–31, .
  • 34. Thomsen K, Murray AS, Jain M and Boetter-Jensen L, 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements43: 1474–1486.
  • 35. Trauerstein M, Lowick SE, Preusser F and Schlunegger F, 2014. Small aliquot and single grain IRSL and post-IR IRSL dating of fluvial and alluvial sediments from the Pativilca valley, Peru. Quaternary Geochronology22: 163–174.
  • 36. Vasiliniuc S, Vandenberghe D, Timar-Gabor A, Panaiotu C, Cosma C and van den Haute P, 2012. Testing the potential of elevated temperature post-IR IRSL signals for dating Romanian loess. Quaternary Geochronology10: 75–80.
  • 37. Veres D, Cosac M, Schmidt C, Muratoreanu G, Hambach U, Hubay K, Wulf S and Karátson D, 2018. New chronological constraints for Middle Palaeolithic (MIS 6/5–3) cave sequences in Eastern Transylvania, Romania. Quaternary International485: 103–114.
  • 38. Wintle AG, 1973. Anomalous fading of thermoluminescence in mineral samples. Nature245: 143–144.
  • 39. Zeeden C, Hambach U, Klasen N, Fischer P, Obreht I, Papadopoulou M, Chu W, Schulte P, Bösken J, Schäbitz F, Gavrilov MB, Veres D, Marković SB, Vött A and Lehmkuhl F, in prep. A Late Quaternary lacustrine record from the south-eastern Carpathian Basin in the context of aeolian sediments.
  • 40. Zhang J, Tsukamoto S, Nottebaum V, Lehmkuhl F and Frechen M, 2015. Deplateau and its implications for post-IR IRSL dating of polymineral fine grains. Quaternary Geochronology30: 147–153.
  • 41. Zimmerman D, 1972. Relative thermoluminescence effects of alpha and beta radiation. Radiation Effects14: 81–92.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0166c648-27bb-48f8-b7af-a620091594ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.