PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The fractal dimension of red blood cell aggregates in dextran 70 solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fractal dimension of three dimensional red blood cell aggregates were determined by measurement of their size and sedimentation velocity. The sedimentation of the aggregates was investigated with red blood cells suspended in dextran 70 solutions at concentrations from 2 to 5 g/dL, at hematocrit 5% and 10%. The aggregate velocity and size were measured using an image analysis technique. The velocity vs. radius dependence of the aggregates exhibited a scaling behavior. This behavior showed the fractal structure of the aggregates. It is shown that the fractal dimension of the three dimensional red blood cell aggregates depends on the dextran concentration in the suspension. This parameter exhibited a minimum at dextran concentration between 3 and 4 g/dL. Thus the fractal dimensions increased as the aggregation extent decreased. The obtained results show that the sedimentation experiment together with image analysis is a promising technique to determine the fractal dimension of the three dimensional red blood cell aggregates.
Słowa kluczowe
Czasopismo
Rocznik
Strony
477--488
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
  • Department of Biophysics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, ul. Jagiellońska 15, 85-067 Bydgoszcz, Poland
  • Department of Biophysics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, ul. Jagiellońska 15, 85-067 Bydgoszcz, Poland
autor
  • Department of Biomechanics, Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 4, 1113 Sofia, Bulgaria
  • Department of Biophysics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, ul. Jagiellońska 15, 85-067 Bydgoszcz, Poland
Bibliografia
  • [1] BASKURT O., NEU B., MEISELMAN H.J., Red Blood Cell Aggregation, CRC Press, Boca Raton, 2011.
  • [2] YALCIN O., UYUKLU M., ARMSTRONG J.K., MEISELMAN H.J., BASKURT O.K., Graded alterations of RBC aggregation influence in vivo blood flow resistance, American Journal of Physiology – Heart and Circulatory Physiology 287(6), 2004, pp. H2644–H2650.
  • [3] BÄUMLER H., NEU B., DONATH E., KIESEWETTER H., Basic phenomena of red blood cell rouleaux formation, Biorheology 36(5–6), 1999, pp. 439–442.
  • [4] STEFFEN P., VERDIER C., WAGNER C., Quantification of depletion-induced adhesion of red blood cells, Physical Review Letters 110(1), 2013, article ID 018102.
  • [5] GAME L., VOEGEL J.C., SCHAAF P., STOLTZ J.F., Do physiological concentrations of IgG induce a direct aggregation of red blood cells: comparison with fibrinogen, Biochimica et Biophysica Acta (BBA) – General Subjects 1291(2), 1996, pp. 138–142.
  • [6] KERNICK D., JAY A.W.L., ROWLANDS S., SKIBO L., Experiments on rouleau formation, Canadian Journal of Physiology and Pharmacology 51(9), 1973, pp. 690–699.
  • [7] FENECH M., GARCIA D., MEISELMAN H.J., CLOUTIER G., A particle dynamic model of red blood cell aggregation kinetics, Annals of Biomedical Engineering 37(11), 2009, pp. 2299–2309.
  • [8] SEHYUN SHIN, YUN-HEE KU, JANG-SOO SUH, SINGH M., Rheological characteristics of erythrocytes incubated in glucose media, Clinical Hemorheology and Microcirculation 38(3), 2008, pp. 153–161.
  • [9] ZILBERMAN-KRAVITS D., HARMAN-BOEHM I., SUSTER T., MEYERSTEIN N., Increased red cell aggregation is correlated with HbA1C and lipid levels in type 1 but not type 2 diabetes, Clinical Hemorheology and Microcirculation 35(4), 2006, pp. 463–471.
  • [10] ANTONOVA N., RIHA P., IVANOV I., Time dependent variation of human blood conductivity as a method for an estimation of RBC aggregation, Clinical Hemorheology and Microcirculation 39(1–4), 2008, pp. 69–78.
  • [11] KALIVIOTIS E., Mechanics of the red blood cell network, Journal of Cellular Biotechnology 1(1), 2015, pp. 37–43.
  • [12] BARSHTEIN G., WAJNBLUM D., YEDGAR S., Kinetics of linear rouleaux formation studied by visual monitoring of red cell dynamic organization, Biophysical Journal 78(5), 2000, pp. 2470–2474.
  • [13] SZOŁNA-CHODÓR A.A., BOSEK M., GRZEGORZEWSKI B., Kinetics of red blood cell rouleaux formation studied by light scattering, Journal of Biomedical Optics 20(2), 2015, article ID 025001.
  • [14] BUSHELL G.C., YAN Y.D., WOODFIELD D., RAPER J., AMAL R., On techniques for the measurement of the mass fractal dimension of aggregates, Advances in Colloid and Interface Science 95(1), 2002, pp. 1–50.
  • [15] JOHNSON C.P., XIAOYAN LI, LOGAN B.E., Settling velocities of fractal aggregates, Environmental Science and Technology 30(6), 1996, pp. 1911–1918.
  • [16] MENG-ZHEN KANG, YAN-JUN ZENG, JIAN-GANG LIU, Fractal research on red blood cell aggregation, Clinical Hemorheology and Microcirculation 22(3), 2000, pp. 229–236.
  • [17] RAPA A., OANCEA S., CREANGA D., Fractal dimensions in red blood cells, Turkish Journal of Veterinary and Animal Sciences 29(6), 2005, pp. 1247–1253.
  • [18] PENG KAI ONG, SWATI JAIN, BUMSEOK NAMGUNG, SANGHO KIM, KEYOUNG JIN CHUN, JUN-UK CHU, DOHYUNG LIM, Study of time-dependent characteristics of a syllectogram in the presence of aggregation inhibition, International Journal of Precision Engineering and Manufacturing 13(3), 2012, pp. 421–428.
  • [19] LIM B., COBBOLD R.S.C., On the relation between aggregation, packing and the backscattered ultrasound signal for whole blood, Ultrasound in Medicine and Biology 25(9), 1999, pp. 1395–1405.
  • [20] HAIDER L., SNABRE P., BOYNARD M., Rheology and ultrasound scattering from aggregated red cell suspensions in shear flow, Biophysical Journal 87(4), 2004, pp. 2322–2334.
  • [21] SNABRE P., HAIDER L., BOYNARD M., Ultrasound and light scattering from a suspension of reversible fractal clusters in shear flow, The European Physical Journal E 1(1), 2000, pp. 41–53.
  • [22] SZOŁNA-CHODÓR A., BOSEK M., GRZEGORZEWSKI B., Effect of glucose on formation of three dimensional aggregates of red blood cells, Series on Biomechanics 29(4), 2015, pp. 20–26.
  • [23] GRZEGORZEWSKI B., KEMPCZYŃSKI A., Blood aggregate size and velocity during blood sedimentation, Proceedings of SPIE 6254, 2006, article ID 62541H.
  • [24] KEMPCZYŃSKI A., GRZEGORZEWSKI B., Estimation of red blood cell aggregate velocity during sedimentation using the Hough transform, Optics Communications 281(21), 2008, pp. 5487–5491.
  • [25] GOODMAN J.W., Introduction to Fourier Optics, McGraw-Hill Book Company, San Francisco, 1968.
  • [26] RICHARDSON J.F., ZAKI W.N., Sedimentation and fluidization: Part I, Transactions of the Institution of Chemical Engineers 32, 1954, pp. 35–53.
  • [27] BATCHELOR G.K., Sedimentation in a dilute dispersion of spheres, Journal of Fluid Mechanics 52(2), 1972, pp. 245–268.
  • [28] ANTONOVA N., RIHA P., IVANOV I., Experimental evaluation of mechanicaland electrical properties of RBC suspensions under flow. Role of RBC aggregating agent, Clinical Hemorheology and Microcirculation 45(2–4), 2010, pp. 253–261.
  • [29] NEU B., MEISELMAN H.J., Depletion-mediated red blood cell aggregation in polymer solutions, Biophysical Journal 83(5), 2002, pp. 2482–2490.
  • [30] MEISELMAN H.J., NEU B., RAMPLING M.W., BASKURT O.K., RBC aggregation: laboratory data and models, Indian Journal of Experimental Biology 45(1), 2007, pp. 9–17.
  • [31] BUXBAUM K., EVANS E., BROOKS D.E., Quantitation of surface affinities of red blood cells in dextran solutions and plasma, Biochemistry 21(13), 1982, pp. 3235–3239.
  • [32] BARSHTEIN G., TAMIR I., YEDGAR S., Red blood cell rouleaux formation in dextran solution: dependence on polymer conformation, European Biophysics Journal 27(2), 1998, pp. 177–181.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01604d5b-01d6-444d-900f-ad1484a74027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.