PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of aspect ratio of enclosure on free convection from horizontal cylinders in Bingham plastic fluids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
The International Chemical Engineering Conference 2021 (ICHEEC): 100 Glorious Years of Chemical Engineering and Technology, September 16–19, 2021
Języki publikacji
EN
Abstrakty
EN
Heat transfer in steady free convection from differentially heated cylinders enclosed in a rectangular duct filled with Bingham plastic fluids has been solved numerically for the ranges of the dimensionless groups as, Rayleigh number, 102 Ra 106; Prandtl number, 10 Pr 100 and, Bingham number, 0 Bn 50 for aspect ratios AR = 05, 0.6, 0.7, 0.8, 0.9 and 2. The streamlines, isotherm contours, yield surfaces, local and average Nusselt numbers were analysed and discussed. It is found that as the aspect ratio of the enclosure increases from 0.5 to 0.9, the average Nusselt number on the surface of the hot cylinder increases as a larger amount of fluid takes part in convection. Moreover, at sufficiently large Bingham numbers, yield stress forces dominate over buoyancy causing the flow to cease and thus the Nusselt number approaches its conduction limit. Finally, the Nusselt number approaches its conduction limit once the maximum Bingham number is reached.
Rocznik
Strony
271--277
Opis fizyczny
Bibliogr. 16 poz., wykr., rys.
Twórcy
  • Department of Chemical Engineering, BIT Sindri, Dhanbad 828123, India
  • Department of Chemical and Biochemical Engineering, IIT Patna 801106, India
  • Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario, Canada
  • BCAM Basque Center for Applied Mathematics, Bizkaia, Spain
Bibliografia
  • 1. Baranwal A.K., Chhabra R.P., 2017. Effect of fluid yield stress on natural convection from horizontal cylinders in a square enclosure. Heat Transfer Eng., 38, 557–577. DOI: 10.1080/01457632.2016.1200373.
  • 2. Barnes H.A., Walters K., 1985. The Yield Stress Myth? Rheol. Acta, 24, 323–326. DOI: 10.1007/BF01333960.
  • 3. Bird R.B., Armstrong R.C., Hassager O., 1987. Dynamics of polymeric liquids. Volume 1: Fluid dynamics. 2nd edition, Wiley, New York.
  • 4. Bird R.B., Dai G.C., Yarusso B.J., 1983. The rheology and flow of viscoplastic materials. Rev. Chem. Eng., 1, 1–70. DOI: 10.1515/revce-1983-0102.
  • 5. Chhabra R. P., Richardson J. F., 2008. Non-Newtonian flow and applied rheology. 2nd edition, Butterworth-Heinemann, Oxford, UK. DOI: 10.1016/B978-0-7506-8532-0.X0001-7.
  • 6. Glowinski R., Wachs A., 2011. On the numerical simulation of viscoplastic fluid flow. Handbook of Numerical Analysis, 16, 483–717. DOI: 10.1016/B978-0-444-53047-9.00006-X.
  • 7. Lee J.M., Ha M.Y., Yoon H.S., 2010. Natural convection in a square enclosure with a circular cylinder at different horizontal and diagonal locations. Int. J. Heat Mass Transfer, 53, 5905–5919. DOI: 10.1016/j.ijheatmasstransfer.2010.07.043.
  • 8. Mishra L., Chhabra R.P., 2020. Combined effects of fluid yield stress and geometrical arrangement on natural convection in a square duct from two differentially heated horizontal cylinders. J. Therm. Sci. Eng. Appl., 12, 011016. DOI: 10.1115/1.4044429.
  • 9. O’Donovan E.J., Tanner R.I., 1984. Numerical study of the Bingham squeeze film problem. J. Non-Newtonian Fluid Mech., 15, 75–83. DOI: 10.1016/0377-0257(84)80029-4.
  • 10. Pandey S., Park Y.G., Ha M.Y., 2019. An exhaustive review of studies on natural convection in enclosures with and without internal bodies of various shapes. Int. J. Heat Mass Transfer, 138, 762–795. DOI: 10.1016/j.ijheatmasstransfer.2019.04.097.
  • 11. Papanastasiou T.C., 1987. Flow of materials with yield. J. Rheol., 31, 385–404. DOI: 10.1122/1.549926.
  • 12. Park Y.G., Yoon H.S., Ha M.Y., 2012. Natural convection in square enclosure with hot and cold cylinders at different vertical locations. Int. J. Heat Mass Transfer, 55, 7911–7925. DOI:10.1016/j.ijheatmasstransfer.2012.08.012.
  • 13. Paul E.I., Atiemo-Obeng V.A., Kresta S.M., 2004. Handbook of industrial mixing: Science and practice. Wiley, Hoboken, NJ. Sairamu M., Nirmalkar N., Chhabra R.P., 2013. Natural convection from a circular cylinder in confined Bingham plastic fluids. Int. J. Heat Mass Transfer, 60, 567–581. DOI: 10.1016/j.ijheatmasstransfer.2013.01.024.
  • 14. Turan O., Poole R.J., Chakraborty N., 2011. Aspect ratio effects in laminar natural convection of Bingham fluids in rectangular enclosures with differentially heated side walls. J. Non-Newtonian Fluid Mech., 166, 208–230. DOI: 10.1016/j.jnnfm.2010.12.002.
  • 15. Turan O., Poole R.J., Chakraborty N., 2012. Boundary condition effects on natural convection of Bingham fluids in a square enclosure with differentially heated horizontal walls. Comput. Therm. Sci.: Int. J., 4, 77–97. DOI: 10.1615/ComputThermalScien.2012004759.
  • 16. Yoon H.S., Park Y.G., Jung J.H., 2014. Natural convection in a square enclosure with differentially heated two horizontal cylinders. Numer. Heat Transfer, Part A, 65, 302–326. DOI: 10.1080/10407782.2013.831679.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-015ff5db-6064-4c29-8c5a-fa1935544ed8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.