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Abstract  Within the realm of machine learning, kernel meth-
ods stand out as a prominent class of algorithms with widespread
applications, including but not limited to classification, regres-
sion, and identification tasks. Our paper addresses the chal-
lenging problem of identifying the finite impulse response (FIR)
of single-input single-output nonlinear systems under the in-
fluence of perturbations and binary-valued measurements. To
overcome this challenge, we exploit two algorithms that leverage
the framework of reproducing kernel Hilbert spaces (RKHS) to
accurately identify the impulse response of the Proakis C chan-
nel. Additionally, we introduce the application of these kernel
methods for estimating binary output data of nonlinear systems.
We showcase the effectiveness of kernel adaptive filters in identi-
fying nonlinear systems with binary output measurements, as
demonstrated through the experimental results presented in this
study.

Keywords  finite impulse response, kernel adaptive filtering,
nonlinear systems identification, Proakis C channel

1. Introduction

Linear adaptive filters represent a distinct category of digi-
tal filters known for their capacity to adapt their parameters
based on input data. These filters are widely employed in sig-
nal processing applications, including tasks such as noise
reduction, echo cancellation, and equalization [1]–[4]. The
fundamental concept behind linear adaptive filters revolves
around employing an algorithm that continually updates the
filter coefficients in response to variations in the input sig-
nal [5], [6].
The widely adopted algorithm for this purpose is the least
mean squares (LMS) algorithm [7], which iteratively refines
the filter coefficients to minimize the mean squared error
between the filter’s output and the desired output. The per-
formance of linear adaptive filters hinges on various factors,
such as the selection of the filter structure, the choice of the
algorithm for coefficient updates, and the design of the input
signal. In general, these filters demonstrate optimal perfor-
mance when the input signal remains relatively stationary or
changes gradually over time. Additionally, selecting a filter

structure that aligns with the statistical properties of the sig-
nal further enhances its effectiveness.
Linear adaptive filters are widely used in various fields, such
as communications, control systems, and biomedical signal
processing, due to their versatility and effectiveness in han-
dling complex signals. They are often used in conjunction
with other signal processing techniques, such as Fourier anal-
ysis and wavelet transforms, to enable more sophisticated
signal processing approaches [1]. For instance, in the field
of biomedical signal processing, adaptive filtering has been
utilized to remove noise and artifacts from electroencephalo-
gram (EEG) signals [8]. In communication systems, adaptive
filters have been applied to mitigate channel impairments and
improve signal quality. In control systems, adaptive filtering
has been used to identify and estimate system parameters,
and to compensate for time-varying disturbances [9].
Machine learning (ML) algorithms, falling within the cat-
egory of kernel methods, find extensive application across
various tasks, such as classification, regression, channel iden-
tification, and more [10], [11]. These methods function by
mapping data into a higher-dimensional space, allowing for
more effective separation and analysis, without the need to
explicitly calculate the coordinates in that space [12]–[15].
These methods are based on the concept that a decision bound-
ary in the reproducing kernel Hilbert space (RKHS) [12] can
be represented as a linear boundary in a lower-dimensional
space, making it possible to capture complex, non-linear rela-
tionships between input features and the output variable [16].
Support vector machines (SVMs) are one of the most widely
used kernel methods, especially for classification tasks [17].
Kernel ridge regression, on the other hand, is often used for
regression tasks due to its ability to capture non-linear rela-
tionships between variables. Additionally, kernel principal
component analysis (PCA) is used for data analysis, allowing
for non-linear feature extraction and dimensionality reduc-
tion [18].
In addition to their performance, kernel methods are also
highly interpretable, allowing users to understand how the
algorithm is making predictions and adjust the model ac-
cordingly. For example, SVMs can be visualized by plotting
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the decision boundary in the input feature space, which can
provide insight into the characteristics of the data and the
model [19].
Recently, kernel methods have been successfully applied in
channel identification tasks, particularly in the context of
blind channel identification, where the channel parameters
are estimated without any prior knowledge of the channel.
Kernel-based blind channel identification methods typically
use a kernel function to map the received signal into a high-
dimensional space, where the channel parameters can be
estimated using linear regression techniques. The estimated
parameters can then be used to equalize the received signal
and improve the accuracy of the communication system [20]–
[24].
At present, there are many adaptive kernel filtering algorithms
that have been exploited for channel identification in wireless
communication systems. Some of them are described below.
Kernel least mean squares (KLMS) is a kernel-based adaptive
filter that can be used for channel identification in wireless
communication systems [25]. In KLMS, a kernel function is
used to map the input data into a higher-dimensional space,
where the linear regression problem is easier to solve. The
KLMS algorithm updates the filter coefficients based on the
difference between the predicted output and the actual out-
put. The Gaussian kernel is a popular choice for this purpose.
Kernel normalized least mean squares (KNLMS) is a variant
of KLMS that includes a normalization factor in the update
rule. This helps prevent the filter coefficients from becoming
too large and unstable [26]. KNLMS can be used for channel
identification in wireless communication systems, and it has
been proven to be effective in reducing computational com-
plexity of KLMS.
Kernel extended improved proportionate NLMS (KE-
IPNLMS) [27] is an algorithm that employs a radial basis
function (RBF) kernel to perform an implicit mapping of the
data using the kernel trick to estimate the impulse response
parameters for single-input single-output (SISO) nonlinear
system identification.
In this paper, we investigate a non-linear system identifica-
tion problem in the presence of noise. Section 2 provides
a detailed description of the problem. In Section 3, we in-
troduce fundamental notations of kernel methods, followed
by a discussion of four algorithms: LMS, NLMS, KLMS,
and KNLMS. We then evaluate the effectiveness of kernel
methods using binary-valued output by analyzing simulation
results in Section 4. Our findings are summarized in Section
5 which concludes the paper.

2. System Descriptions

In this section, we introduce some notations and assumptions
that will be used throughout the paper.
The Hammerstein system, a distinctive nonlinear model, is
frequently employed in the realm of system identification.
System identification aims to create precise mathematical
models that mirror the behavior of real-world systems using
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Fig. 1. Block diagram of the Hammerstein system.

observed input-output data. In this context, we focus on
the Hammerstein system depicted in Fig. 1. This system
comprises a nonlinear static function followed by a FIR filter
with a known order. This structure is chosen for its ability
to effectively represent both nonlinear and linear dynamics
in a system, offering sufficient flexibility and interpretability
during the identification process.
As shown in Fig. 1, the desired system output can be obtained
using the following expression:v(n) =

L−1∑
i=0
h(i) g
(
x(n− i)

)
d(n) = v(n) + b(n), n = 0, 1, 2, . . . , N

, (1)

where x(k) is the input signal, h(i), i = 0, 1, . . . , L− 1 rep-
resents the channel impulse response, L refers to the FIR
system order, g(.) denotes the nonlinearity and b(k) is the
measurement noise.
The Hammerstein system was adopted under the following
fundamental assumptions:
• the input sequence x(n) is an independent and identically

distributed (i.i.d.) bounded random process characterized
by a zero mean,
• the additive noise, represented as b(n), is proposed to be

Gaussian and independent of both x(n) and d(n) (both are
bounded),
• function g(.) is both invertible and continuous for any finite

value of x.
The hypotheses listed above are formulated to simplify the
system analysis process and to achieve the best results in
terms of mean square error. The primary objective of this
paper is to present a comparison of the kernel methods that
have been proposed in the literature for identifying the output
d generated by Eq. (1).

3. Kernel Methods

Here, we introduce kernel methods, a category of techniques
that empower us to extend traditional linear algorithms to
handle non-linear data. The fundamental concept underly-
ing kernel methods is the application of linear algorithms
to a transformed representation of the data within a higher-
dimensional space. This transformation facilitates the separa-
tion of data points into classes that were not linearly separable
in the original space.
Kernel methods constitute a category of ML algorithms that
leverage kernel functions to map input data into a higher-
dimensional space. They find primary application in tackling
classification and regression tasks.
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Definition 1. A function κ : X × X 7−→ R is a similarity
measure if the following conditions are satisfied:
• x, y ∈ X κ(x, y)  0,
• x, y ∈ X κ(x, y) = κ(y, x),
• ∀y ∈ X , y ̸= x κ(x, y) > κ(x, x),
• κ(x, y) = κ(x, x)⇔ x = y.

3.1. Positive Definite Kernel

Theorem 1. Let X be a compact in R (compact = closed and
bounded) andK : X × X 7−→ R a symmetric function. We
also assume that ∀f ∈ L2(X ):∫

X
K(x, y)f(x)f(y)dxdy ⩾ 0 (Mercer condition) . (2)

Then there exists a Hilbert spaceH and Φ : X −→ H such
that ∀(x, y) ∈ X 2:

K(x, y) =
〈
Φ(x),Φ(y)

〉
. (3)

The functionK(x, y) is called positive definite kernel.
An equivalent condition for the functionK : X ×X 7−→ R
to be a definite positive kernel is the following:
• ∀n ∈ N and {xi} i = 1, . . . , n ⊂ X the Gramm matrix

K = [Ki,j ] i = 1, . . . , n =
[
K(xi, xj)

]
i = 1, . . . , n (4)

is positive definite, that is:

∀c ∈ Rn, c ̸= 0, we have c⊤Kc > 0 . (5)

Therefore, a valid kernel ensures the existence ofH and can
be expressed as a scalar product in Hilbert spaceH. A good
kernel also guarantees the convexity of the quadratic opti-
mization problem under inequality constraints encountered
for SVM.

3.2. Conditionally Positive Definite Kernel

A kernel is conditionally positive definite (CPD) if ∀n ∈ N
and {xi} i = 1, . . . , n ⊂ X the Gramm matrix:

K =
[
Ki,j
]
i = 1, . . . , n =

[
K(xi, xj)

]
i = 1, . . . , n (6)

is conditionally positive definite, i.e.

∀c ∈ Rn, c ̸= 0 such as
n∑
i=1

ci = 0, we have c⊤Kc > 0. (7)

This definition extends the class of kernel functions for which
the SVM optimization problem is guaranteed to be convex.
Given a positive conditionally defined symmetric kernel, there
exists:
• a vector space V ,
• a transformation Φ : X −→ V ,
• a bilinear form Q : V × V 7−→ R
such as:

K(x, y) = Q
(
Φ(x),Φ(y)

)
, (8)

• ifK is not defined positive, then Q is not a scalar product.

3.3. Construction of Positive Definite Kernels

There are several approaches to obtain kernel functions.
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Fig. 2. The exponential of a kernel is a kernel.
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Fig. 3. The cosh of a kernel is a kernel.

• Direct construction (using the Φ projection):
Direct definition ofH, Φ : X 7−→ H and then construc-
tion of the kernel:

K : X × X 7−→ R by K(x, y) =
〈
Φ(x),Φ(y)

〉
(9)

Example 1. Let X be a compact in R. We consider
Φ : X 7−→ R, thenK : X × X 7−→ R defined by:

K(x, y) = Φ(x) · Φ(y) (10)

is a positive definite kernel.
Note that these conforming kernels cannot be interpreted
as similarities.
Particular cases:
• f : R 7−→ R, Φ(x) = x :K(x, y) = x · y,
• f : R 7−→ R, Φ(x) = ex :K(x, y) = ex+y .

– Transformation of existing kernels:
1) If K : X × X 7−→ R is positive definite, then the

definition of exp(K) is also positive definite.
2) If K : X × X 7−→ [−1, 1] is positive definite then
cosh(K) is positive definite too.
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• Combination of existing kernels:
If K1,K2 : X × X 7−→ R are positive definite and
α1, α2 > 0 then the following kernels are also positive
definite:
– linear combination: K(x, y) = α1K1(x, y) +
α2K2(x, y),

– simple product:K(x, y) = α1K1(x, y) · α2K2(x, y).
Obviously,K is defined on X × X with values in R.
IfK1 : X ×X 7−→ R andK2 : X ×X 7−→ R are positive
definite then are also positive definite:
– direct sum :K1

⊕
K2 = K1 +K2,

– tensor product :K1
⊗
K2 = K1.K2.

3.4. Examples of Kernels

In this subsection, we aim to illustrate several examples of
kernels that are widely used across diverse applications. Ker-
nels play a crucial role in various machine learning and
statistical techniques, contributing to their flexibility and ef-
fectiveness.

1) Linear kernel:
– Definition:K(xi, xj) = x⊤i xj = ⟨xi, xj⟩.
– Explanation: A linear kernel computes the inner prod-

uct between input vectors, providing a measure of simi-
larity based on their alignment. It serves as a foundation-
al choice, particularly in scenarios where the underlying
relationships are expected to be linear.

2) Polynomial kernel:
– Definition:K(xi, xj) =

(
⟨xi, xj⟩+ c

)p
.

– Explanation: A polynomial kernel introduces non-
linearity by raising the dot product to a certain power p,
with an optional constant term c. This kernel is effective
in capturing higher-order relationships in the data.

3) Gaussian radial basis function (RBF) kernel:
– Definition:K(xi, xj) = exp(−γ∥xi − xj∥2).
– Explanation: An RBF kernel measures similarity based

on the Euclidean distance between vectors. It is widely
employed for its ability to capture complex, non-linear
relationships and is a key component in support vector
machines (SVMs).

4) Sigmoid kernel:
– Definition:K(xi, xj) = tgh

(
a⟨xi, xi⟩+ c

)
.

– Explanation: A sigmoid kernel is useful for capturing
relationships characterized by sigmoidal shapes. It is
employed in neural networks and logistic regression,
providing flexibility in modeling.

3.5. LMS Algorithm

The LMS algorithm is a specific type of an adaptive filter used
in digital signal processing and machine learning applications.
It is widely used to tackle tasks such as system estimation,
channel radio equalization, noise cancellation, and adaptive
beamforming.

The basic idea behind the LMS algorithm is to adjust the
weights of a linear filter iteratively, based on the difference
between the predicted output of the filter and the actual
output. The algorithm uses a measure of the error between
the predicted and actual outputs, called the “error signal”, to
update the filter weights in the direction that minimizes the
error. The LMS weight update recursion is [7]:

θ(n+ 1) = θ(n) + µ e(n)x(n) , (11)

where µ is the step size or learning rate, and e(n) is the error
at time n given by:

e(n) = d(n)− θ(n)⊤x(n) , (12)

where d(n) is the desired output at time n.

3.6. NLMS Algorithm

The NLMS algorithm is a variation of the LMS algorithm
that improves its performance by normalizing the weight
update step based on the power of the input signal. This
makes the algorithm more robust to changes in the input
signal power, and it can converge faster and more accurately
than the standard LMS algorithm.
The basic idea behind the NLMS algorithm is similar to
that of the LMS algorithm. It adjusts the weights of a linear
filter iteratively based on the difference between the predicted
output of the filter and the actual output. However, the weight
update step in the NLMS algorithm is normalized based on
the power of the input signal, which helps prevent the weight
update from becoming too large or too small.
The formula for the weight update in the NLMS algorithm
is [28]:

θ(n+ 1) = θ(n) +
µ

∥x(n)∥2 e(n)x(n) , (13)

where θ(n) is the filter weights at iteration n, µ is the step-size
parameter, e(n) is the error signal at iteration n, x(n) is the
input signal at iteration n, and ∥x(n)∥2 is the power of the
input signal.
The NLMS algorithm has several advantages over the LMS
algorithm, including its faster convergence rate, better tracking
of time-varying signals, and improved robustness to changes
in the input signal power. However, it can be sensitive to noise
and can still suffer from slow convergence or local minima if
the step-size parameter is set too high.

3.7. KLMS Algorithm

Kernel least mean square (KLMS) is an online ML algorithm
that is designed for non-linear regression problems. KLMS
uses a kernel function to transform the input data into a high-
dimensional feature space, where a linear relationship between
inputs and outputs can be learned using a simple linear model.
A description of the KLMS algorithm is given below [25]:

θ(0) = 0

e(n) = d(n)− θ(n− 1)⊤Φ
(
x(n)
)

θ(n) = θ(n− 1) + µ e(n)Φ
(
x(n)
)
. (14)
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The KLMS algorithm works by transforming the input data
into a high-dimensional feature space using a kernel function.
The kernel function measures the similarity between two data
points and maps them into a high-dimensional space, where
they can be linearly separable. The output θ(n−1)⊤Φ

(
x(n)
)

is then predicted using the inner product of the kernel function
and the weight vector θ. The error e(n) is computed as the
difference between the predicted output θ(n− 1)⊤Φ

(
x(n)
)

and the actual output d(n).
The KLMS algorithm updates the weight vector w using the
error e and the kernel function κ to compute the update. The
update rule follows the same principle as the LMS algorithm,
where the weight vector is updated in the direction that reduces
the error. The update rule includes the kernel function to
account for the nonlinear relationship between inputs and
outputs.

3.8. KNLMS Algorithm

The KNLMS algorithm is a variation of the NLMS algo-
rithm that uses a kernel function to map the input signal to
a higher-dimensional space, where it is easier to separate lin-
early. This makes the algorithm more powerful and versatile,
with applications in nonlinear filtering and prediction.
The basic idea behind the KNLMS algorithm is to apply a non-
linear mapping to the input signal using a kernel function,
such as a Gaussian or polynomial function. The mapped sig-
nal is then used as the input to the standard NLMS algorithm,
which updates the filter weights based on the difference be-
tween the predicted output and the actual output. The weight
update step is normalized based on the power of the mapped
signal, similar to the NLMS algorithm.
The formula for the weight update in the KNLMS algorithm
is [26]:

θ(n+ 1) = θ(n) +
µ

ε+
∥∥Φ(x(n))∥∥2 e(n)Φ(x(n)) , (15)

where θ(n) is the filter weights at iteration n, µ is the
step-size parameter, e(n) is the error signal at iteration n,
Φ
(
x(n)
)

is the mapped input signal at iteration n, ε refers to
a small constant mobilized to avoid numerical problems, and
∥Φ
(
x(n)
)
∥2 is the power of the mapped input signal.

The KNLMS algorithm has several advantages over the
NLMS algorithm, including its ability to handle nonlinear
signals and its improved performance in high-dimensional
spaces. However, it can be computationally expensive and
may require careful selection of the kernel function and its
parameters to achieve good performance.

4. Simulation Results and Discussion

To validate the efficacy of the presented algorithms in the
presence of Gaussian additive noise, simulations were per-
formed, focusing on nonlinear system identification with
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Fig. 4. Estimation of the Proakis C channel impulse response, for
a data length of N = 1000 and SNR = 20 dB.

binary-valued output, utilizing the Gaussian kernel.

κ(x, y) = exp

(
−∥x− y∥

2

2σ2

)
, ∀(x, y) ∈ X 2 , (16)

where σ > 0 represents the smoothing parameter.
The simulations involve passing a signal x(n) from a normal
distribution with mean 0 and variance 1 through a Hammer-
stein system. This system consists of a nonlinearity tgh(x)
followed by a linear finite impulse response (FIR) channel.
The linear channel uses an impulse response h of length
L = 5 known as the Proakis C channel, with coefficients of
[0.227, 0.460, 0.688, 0.460, 0.227]. Additionally, Gaussian
white noise with a power of 20 dB is added to the chan-
nel output during each of the 1024 iterations. Finally, with
the aid of a binary detector I[.] that employs a predefined
threshold C ∈ R, the system’s output d(k) becomes mea-
surable. The quantized output data s(k) can be represented
mathematically as follows:

s(k) = I[d(n)C] =

{
1 if d(n)  C
−1 otherwise .

(17)

4.1. Proakis C Channel Identification

Figure 4 shows the impulse response parameters of the Proakis
C channel estimated using both algorithms (KLMS and
KNLMS). The estimates were obtained for SNR = 15 dB
andN = 1024 input signal samples, using 50 Monte Carlo it-
erations. The results indicate that the kernel normalized least
mean squares (KNLMS) algorithm accurately estimates the
response parameters, while the KLMS algorithm produces
estimated values that differ significantly from the measured
values. To assess the frequency domain performance of both
algorithms, we visualize the estimated amplitude and phase
response of the Proakis C channel’s impulse response for
a sample size of N = 1000 and SNR = 20 dB. Figure 5
highlights the estimates of the amplitude and phase of the
Proakis C channel, using the KLMS and KNLMS algorithms.
Based on these results, the KNLMS algorithm proves to be
more effective than the KLMS algorithm, as it allows to ob-
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Fig. 5. Estimation of the Proakis C amplitude for a data length of
N = 3000 and SNR = 20 dB.

tain the same shapes of the estimated amplitude and phase
values as those measured.

4.2. Output Data Estimation

In Figs. 6 and 7, the estimation of the output d(k) for nonlinear
system identification without binary-valued output observa-
tions is demonstrated using KLMS and KNLMS. The lower
graphs depict the complete signal form for a data length of
N = 1000, while the upper graphs focus on data lengths be-
tween 590 and 640 to provide a more detailed view of the
processed signals.
It should be noted that with the KNLMS algorithm, the esti-
mated output d(k) follows the true model in perfect agree-
ment with the measured data (Fig. 7). In comparison, with
the KLMS algorithm, we observe that the estimated output
d(k) follows the variations of the real output with some fluc-
tuations. The performance of the KLMS algorithm degrades
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Fig. 7. Output d(k) estimation using KNLMS algorithm: a) zoomed-
in between 590–640 samples, b) full 1000 samples.

when estimating the output for small sample sizes N < 100,
and we have a significant difference between the shape of the
estimated and measured output (Fig. 6).
To illustrate the performance of adaptive kernel filter algo-
rithms (KLMS and KNLMS) based on binary data output,
the identification is applied to Hammerstein models with dif-
ferent complexities and binary output.
The estimation of the binary output s(k) as a function of
the number of samples is presented in Figs. 8 and 9, using
KNLMS and KLMS for a SNR of 20 dB. It appears that the
estimated binary output takes the same form as the measured
output data. The estimation of the binary output is done with
high accuracy using the KNLMS algorithm. In the case of
the KLMS algorithm, we observe a difference in some sam-
ples (Fig. 8).
The KNLMS algorithm is often considered more effective
than the KLMS algorithm for system identification because
it can produce more accurate estimates of the output data.
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The main reason for this is that the KNLMS algorithm in-
cludes a normalization step that improves the stability and
convergence of the algorithm. This is particularly important
in noisy environments, where the impact of noise on the esti-
mated impulse response can be reduced, leading to improved
accuracy in the channel identification process.
Based on the results obtained, it can be concluded that kernel
adaptive filters are effective in identifying nonlinear systems
with binary output measurements. Nonlinear systems with
binary output can offer various advantages. Firstly, binary out-
put is easier to process and interpret compared to continuous
output due to its simplicity, which results in lower computa-
tional and storage requirements. Secondly, binary output is
more robust to noise and interference than continuous output.
Binary signals are less affected by small variations or fluctu-
ations in the input signal, thus enhancing the accuracy and
reliability of the system.

5. Conclusion

In our research paper, we delved into the intricate task of iden-
tifying nonlinear systems characterized by binary output data,
and we addressed this challenge through the implementation
of adaptive kernel filtering algorithms. Our specific applica-
tion honed in on the estimation of parameters associated with
the Proakis channel, a scenario with inherent complexities.
The Proakis channel is known for its practical relevance in
communication systems, and accurate estimation of its pa-
rameters is crucial for optimizing system performance.
In the course of our investigations, we focused on the Ham-
merstein system identification problem, aiming to discern the
most effective algorithm for binary output data estimation
and channel impulse response parameter estimation. Notably,
simulations unveiled compelling results, showcasing that, in
this context, the KNLMS algorithm exhibited superior per-
formance when compared to the KLMS algorithm.

The KNLMS algorithm’s proficiency in handling the unique
challenges posed by binary output data and accurately es-
timating the channel impulse response parameters in the
Hammerstein system underscores its efficacy in scenarios
where nonlinearities and binary responses are prevalent. Our
findings contribute valuable insights to the field of system
identification, especially in applications where binary out-
put data and the Hammerstein system model are prominent,
offering researchers and practitioners a promising tool for en-
hancing the accuracy and reliability of their models. These
results pave the way for further exploration and refinement of
adaptive kernel filtering algorithms in the realm of nonlinear
system identification.
Moving forward, our primary emphasis will be on enhancing
the kernel algorithm to enable the identification of measurable
frequency-selective fading radio channels.
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