Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The utilization of intra-aortic balloon pump (IABP) and Impella has been suggested as means of left ventricular unloading in veno-arterial extracorporeal membrane oxygenation (VA-ECMO) patients. This study aimed to assess the local hemodynamic alterations in VA-ECMO patients through simulation analyses. Methods: In this study, a 0D-3D multiscale model was developed, wherein resistance conditions were employed to define the flow-pressure relationship. An idealized model was employed for the aorta, and simulations were conducted to contrast the hemodynamics supported by two configurations: VA-ECMO combined with IABP, and VA-ECMO combined with Impella. Results: In relation to VA-ECMO alone, the combination treatment had the following differences: (1) overall mean mass flow rate increased significantly when combined with Impella and did not change significantly when combined with IABP. Blood flow pulsatility was the strongest in ECMO + IABP, and blood flow pulsatility was significantly suppressed in ECMO + Impella; (2) for all arterial inlets, HI was decreased with ECMO + Impella and increased with ECMO + IABP; (3) the flow field did not change much with ECMO + IABP, with better blood flow compliance, whereas the flow field was relatively more chaotic and disorganized with ECMO + Impella; (4) the difference between shear stress values in ECMO + IABP and ECMO alone was small, and ECMO + Impella (P6) had the largest shear stress values. Conclusions: Variances in hemodynamic efficacy between VA-ECMO combined with IABP and VA-ECMO combined with Impella may underlie divergent prognoses and complications. The approach to ventricular unloading during ECMO and the degree of support should be meticulously tailored to individual patient conditions, as they represent pivotal factors influencing vascular complications.
Czasopismo
Rocznik
Tom
Strony
25--36
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, People’s Republic of China
- Anhui Tongling Bionic Technology Co. Ltd, No. 5089, Wangjiang West Road, Hefei, People’s Republic of China
autor
- Anhui Tongling Bionic Technology Co. Ltd, No. 5089, Wangjiang West Road, Hefei, People’s Republic of China
autor
- Anhui Tongling Bionic Technology Co. Ltd, No. 5089, Wangjiang West Road, Hefei, People’s Republic of China
autor
- Anhui Tongling Bionic Technology Co. Ltd, No. 5089, Wangjiang West Road, Hefei, People’s Republic of China
autor
- Anhui Tongling Bionic Technology Co. Ltd, No. 5089, Wangjiang West Road, Hefei, People’s Republic of China
autor
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, People’s Republic of China
Bibliografia
- [1] ANDO J., YAMAMOTO K., Vascular mechanobiology: endothelial cell responses to fluid shear stress, Circ. J., 2009. 73 (11), 1983–1992.
- [2] ATHANASIOU L.S., NEZAMI F.R., EDELMAN E.R., Hemodynamic consequences of a multilayer flow modulator in aortic dissection, Med. Biol. Eng. Comput., 2019, 57 (9), 1861–1874.
- [3] AU S.Y., FONG K.M., TSANG C.S., CHAN K.A., WONG C.Y., NG W.G., LEE K.Y.M., Veno-arterial extracorporeal membranę oxygenation with concomitant Impella versus concomitant intra-aortic-balloon-pump for cardiogenic shock, Perfusion, 2023, 38 (1), 51–57.
- [4] BERGER S.A., JOU L.D.J.A.R.O.F.M., Flows in Stenotic Vessels, 2000, 32, 347–382.
- [5] BERNHARDT A.M., HILLEBRAND M., YILDIRIM Y., HAKMI S., WAGNER F.M., BLANKENBERG S., REICHENSPURNER H., LUBOS E., Percutaneous left atrial unloading to prevent pulmonary oedema and to facilitate ventricular recovery under extracorporeal membrane oxygenation therapy, Interact. Cardiovasc. Thorac. Surg., 2018, 26 (1), 4–7.
- [6] CARUSO M.V., GRAMIGNA V., FRAGOMENI G., A CFD investigation of intra-aortic balloon pump assist ratio effects on aortic hemodynamics, Biocybernetics and Biomedical Engineering, 2019, 39 (1), 224–233.
- [7] CARUSO M.V., GRAMIGNA V., RENZULLI A., FRAGOMENI G., Computational analysis of aortic hemodynamics during total and partial extracorporeal membrane oxygenation and intraaortic balloon pump support, Acta Bioeng. Biomech., 2016, 18 (3), 3–9.
- [8] CENTOFANTI P., ATTISANI M., LA TORRE M., RICCI D., BOFFINI M., BARONETTO A., SIMONATO E., CLERICI A., RINALDI M., Left Ventricular Unloading during Peripheral Extracorporeal Membrane Oxygenator Support: A Bridge To Life In Profound Cardiogenic Shock, J. Extra Corpor. Technol., 2017, 49 (3), 201–205.
- [9] CHAR S., FRIED J., MELEHY A., MEHTA S., NING Y., KURLANSKY P., TAKEDA K., Clinical efficacy of direct or indirect left ventricular unloading during venoarterial extracorporeal membrane oxygenation for primary cardiogenic shock, J. Thorac. Cardiovasc. Surg., 2023, 165 (2), 699–707.e695.
- [10] DI MOLFETTA A., ADACHI I., FERRARI G., GAGLIARDI M.G., PERRI G., IACOBELLI R., QURESHI A.M., DI PASQUALE L., VERA R.Z., GUCCIONE P., DI MOLFETTA M., CHIARIELLO G.A., FILIPPELLI S., AMODEO A., Left ventricular unloading during extracorporeal membrane oxygenation – Impella versus atrial septal defect: A simulation study, Int. J. Artif. Organs, 2020, 43 (10), 663–670.
- [11] DONKER D.W., BRODIE D., HENRIQUES J.P.S., BROOMÉ M., Left Ventricular Unloading During Veno-Arterial ECMO: A Simulation Study, Asaio J., 2019, 65 (1), 11–20.
- [12] ECKMAN P.M., KATZ J.N., EL BANAYOSY A., BOHULA E.A., SUN B., VAN DIEPEN S., Veno-Arterial Extracorporeal Membrane Oxygenation for Cardiogenic Shock: An Introduction for the Busy Clinician, Circulation, 2019, 140 (24), 2019–2037.
- [13] GANDHI K.D., MORAS E.C., NIROULA S., LOPEZ P.D., AGGARWAL D., BHATIA K., BALBOUL Y., DAIBES J., CORREA A., DOMINGUEZ A.C., BIRATI E.Y., BARAN D.A., SERRAO G., MAHMOOD K., VALLABHAJOSYULA S., FOX A., Left Ventricular Unloading With Impella Versus IABP in Patients With VA-ECMO: A Systematic Review and Meta-Analysis, Am. J. Cardiol., 2023, 208, 53–59.
- [14] GAO B., GU K., ZENG Y., LIU Y., CHANG Y., A blood assist index control by intraaorta pump: a control strategy for ventricular recovery, Asaio J., 2011, 57 (5), 358–362.
- [15] GRANDIN E.W., NUNEZ J.I., WILLAR B., KENNEDY K., RYCUS P., TONNA J.E., KAPUR N.K., SHAEFI S., GARAN A.R., Mechanical Left Ventricular Unloading in Patients Undergoing Venoarterial Extracorporeal Membrane Oxygenation, J. Am. Coll. Cardiol., 2022, 79 (13), 1239–1250.
- [16] GU K., CHANG Y., GAO B., LIU Y., ZHANG Z., WAN F., Lumped parameter model for heart failure with novel regulating mechanisms of peripheral resistance and vascular compliance, Asaio J, 2012, 58 (3), 223–231.
- [17] GU K., ZHANG Y., GAO B., CHANG Y., ZENG Y., Hemodynamic Differences Between Central ECMO and Peripheral ECMO: A Primary CFD Study, Med. Sci. Monit., 2016, 22, 717–726.36 H. YU et al.
- [18] GU K.Y., GAO B., CHANG Y., LIU Y.J., Research on lumped parameter model based on intra-aorta pump, Yiyong Shengwu Lixue/Journal of Medical Biomechanics, 2011, 26, 367–372.
- [19] KIM H.J., VIGNON-CLEMENTEL I.E., FIGUEROA C.A., JANSEN K.E., TAYLOR C.A., Developing computational methods for threedimensional finite element simulations of coronary blood flow, Finite Elements in Analysis and Design, 2010, 46 (6), 514–525.
- [20] LORUSSO R., Are two crutches better than one? The ongoing dilemma on the effects and need for left ventricular unloading during veno-arterial extracorporeal membrane oxygenation, Eur. J. Heart Fail, 2017, 19 (3), 413–415.
- [21] MEANI P., GELSOMINO S., NATOUR E., JOHNSON D.M., ROCCA H.B., PAPPALARDO F., BIDAR E., MAKHOUL M., RAFFA G., HEUTS S., LOZEKOOT P., KATS S., SLUIJPERS N., SCHREURS R., DELNOIJ T., MONTALTI A., SELS J.W., VAN DE POLL M., ROEKAERTS P., POELS T., KORVER E., BABAR Z., MAESSEN J., LORUSSO R., Modalities and Effects of Left Ventricle Unloading on Extracorporeal Life support: a Review of the Current Literature, Eur. J. Heart Fail, 2017, 19, Suppl. 2, 84–91.
- [22] MEANI P., PAPPALARDO F., The step forward for VA ECMO: left ventricular unloading!, J. Thorac Dis., 2017, 9 (11), 4149–4151.
- [23] MOAZZAMI K., DOLMATOVA E.V., COCKE T.P., ELMANN E., VAIDYA P., NG A.F., SATYA K., NARAYAN R.L., Left Ventricular Mechanical Support with the Impella during Extracorporeal Membrane Oxygenation, J. Tehran Heart Cent., 2017, 12 (1), 11–14.
- [24] NEIDLIN M., CORSINI C., SONNTAG S.J., SCHULTE-EISTRUP S., SCHMITZ-RODE T., STEINSEIFER U., PENNATI G., KAUFMANN T.A.S., Hemodynamic analysis of outflow grafting positions of a ventricular assist device using closed-loop multiscale CFD simulations: Preliminary results, J. Biomech., 2016, 49 (13), 2718–2725.
- [25] NEZAMI F.R., KHODAEE F., EDELMAN E.R., KELLER S.P., A Computational Fluid Dynamics Study of the Extracorporeal Membrane Oxygenation-Failing Heart Circulation, Asaio J., 2021, 67 (3), 276–283.
- [26] PAPPALARDO F., SCHULTE C., PIERI M., SCHRAGE B., CONTRI R., SOEFFKER G., GRECO T., LEMBO R., MÜLLERLEILE K., COLOMBO A., SYDOW K., DE BONIS M., WAGNER F., REICHENSPURNER H., BLANKENBERG S., ZANGRILLO A., WESTERMANN D., Concomitant implantation of Impella(®) on top of veno-arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock, Eur. J. Heart Fail, 2017, 19 (3), 404–412.
- [27] PEDLEY T.J., The Fluid Mechanics of Large Blood Vessels, Cambridge Monographs on Mechanics, Cambridge University Press, 1980.
- [28] RIKHTEGAR NEZAMI F., ATHANASIOU L.S., AMRUTE J.M., EDELMAN E.R., Multilayer flow modulator enhances vital organ perfusion in patients with type B aortic dissection, Am. J. Physiol. Heart Circ. Physiol., 2018, 315 (5), H1182–h1193.
- [29] ROBERTS N., CHANDRASEKARAN U., DAS S., QI Z., CORBETT S., Hemolysis associated with Impella heart pump positioning: In vitro hemolysis testing and computational fluid dynamics modeling, Int. J. Artif. Organs, 2020, 391398820909843.
- [30] RUSSO J.J., ALEKSOVA N., PITCHER I., COUTURE E., PARLOW S., FARAZ M., VISINTINI S., SIMARD T., DI SANTO P., MATHEW R., SO D.Y., TAKEDA K., GARAN A.R., KARMPALIOTIS D., TAKAYAMA H., KIRTANE A.J., HIBBERT B., Left Ventricular Unloading During Extracorporeal Membrane Oxygenation in Patients With Cardiogenic Shock, J. Am. Coll. Cardiol., 2019, 73 (6), 654–662.
- [31] SAITO S., NISHINAKA T., WESTABY S., Hemodynamics of chronić nonpulsatile flow: implications for LVAD development, Surg. Clin. North Am., 2004, 84 (1), 61–74.
- [32] SCHMACK B., SEPPELT P., WEYMANN A., ALT C., FARAG M., ARIF R., DOESCH A.O., RAAKE P.W., KALLENBACH K., MANSUR A., POPOV A.F., KARCK M., RUHPARWAR A., Extracorporeal life support with left ventricular decompressionimproved survival in severe cardiogenic shock: results from a retrospective study, PeerJ., 2017, 5, e3813.
- [33] STEVENS M.C., CALLAGHAN F.M., FORREST P., BANNON P.G., GRIEVE S.M., Flow mixing during peripheral veno-arterial extra corporeal membrane oxygenation – A simulation study, J. Biomech., 2017, 55, 64–70.
- [34] WANG Y., WANG J., PENG J., HUO M., YANG Z., GIRIDHARAN G.A., LUAN Y., QIN K., Effects of a Short-Term Left Ventricular Assist Device on Hemodynamics in a Heart Failure Patient-Specific Aorta Model: A CFD Study, Front. Physiol., 2021, 12, 733464.
- [35] XIAO N., ALASTRUEY J., ALBERTO FIGUEROA C., A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models, Int. J. Numer. Method. Biomed. Eng., 2014, 30 (2), 204–231.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-015646e6-e0dc-41da-8614-6b35e91b9110
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.