PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electronic structure, stability, and strength of Cu-NiAl alloys : experiment and DFT investigation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the copper doping effect on the NiAl structural stability, strength, and electronic structure was investigated. The samples were prepared using induction melting at 2073 K. This material presents good mechanical and physical properties such as high-temperature strength, fatigue or impact, and corrosion resistance which meet technical requirements of many applications. The microstructure of the Cu-doped nickel aluminide was studied using a metallurgical microscope and its lattice parameter was also studied and characterized using an X-ray diffractometer for different concentrations of Cu. The lattice constant of the existing phases was calculated, and it was found that the lattice distortion and gamma prime phase energy have high values allowing the increase of the entropy term of the alloy and subsequently increasing its hardness. From the ab-initio calculation, it was determined that the Cu atoms have the Al sites as a preferred site and prefer to bond with Ni atoms which leads to the improvement of the material hardness. Ab-initio density functional theory was applied to study the formation energy that revealed increasing with Cu amount.
Rocznik
Strony
art. no. e141707
Opis fizyczny
Bibliogr. 33 poz., rys., wykr., tab.
Twórcy
  • CONACYT-Tecnológico Nacional de México/I.T. Chetumal; Insurgentes 330, C.P. 77013, Chetumal, Quintana Roo, Mexico
Bibliografia
  • [1] Bochenek, K. & Basista, M. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Prog. Aerosp. Sci. 79, 136-146 (2015). https://doi.org/10.1016/j.paerosci.2015.09.003
  • [2] Chandler, K. A., Marine and Offshore Corrosion. (Elsevier, 1985). https://doi.org/10.1016/C2013-0-06267-6
  • [3] Busso, E. P. & McClintock, F. A. Mechanisms of cyclic defor-mation of NiAl single crystals at high temperatures. Acta Metall. Mater. 42, 3263-3275 (1994). https://doi.org/10.1016/0956-7151(94)90459-6
  • [4] Ren, W. L., Guo, J. T., Li, G. S. & Wu, J. S. The critical temperature for brittle-to-ductile transition of intermetallic compound based on NiAl. Mater. Lett. 58, 1272-1276 (2004). https://doi.org/10.1016/j.matlet.2003.09.020
  • [5] Porcayo-Calderon, J. et al. Effect of Cu addition on the electro-chemical corrosion performance of Ni3Al in 1.0 M H2SO4. Adv. Mater. Sci. Eng. 2015, 209286 (2015). https://doi.org/10.1155/2015/209286
  • [6] Huai, K., Guo, J., Gao, Q. & Yang, R. The microstructure of Au-doped NiAl–Cr(Mo) eutectic and its mechanical properties. Mater. Lett. 59, 3291–3294 (2005). https://doi.org/10.1016/j.matlet.2005.05.061
  • [7] Chiba, A., Hanada, S. & Watanabe, S. Improvement in ductility of Ni3Al by γ former doping. Mater. Sci. Eng. A 152, 108–113 (1992). https://doi.org/10.1016/0921-5093(92)90054-5
  • [8] Bhosale, A. G. & Chougule, B. K. Electrical conduction in Ni–Al ferrites. Mater. Lett. 60, 3912–3915 (2006). https://doi.org/10.1016/j.matlet.2006.03.139
  • [9] Darolia, R., Lahrman, D. & Field, R. The effect of iron, gallium and molybdenum on the room temperature tensile ductility of NiAl. Scr. Metall. Mater. 26, 1007-1012 (1992). https://doi.org/10.1016/0956-716X(92)90221-Y
  • [10] Pan, Y., Li, Y. & Zheng, Q. Influence of Ir concentration on the structure, elastic modulus and elastic anisotropy of NbIr based compounds from first-principles calculations. J. Alloys Compd. 789, 860-866 (2019). https://doi.org/10.1016/j.jallcom.2019.03.083
  • [11] Pan, Y., Wang, P. & Zhang, C.-M. Structure, mechanical, electronic and thermodynamic properties of Mo5Si3 from first-principles calculations. Ceram. Int. 44, 12357-12362 (2018). https://doi.org/10.1016/j.ceramint.2018.04.023
  • [12] Pan, Y. First-principles investigation of the new phases and electro-chemical properties of MoSi2 as the electrode materials of lithium ion battery. J. Alloys Compd. 779, 813-820 (2019). https://doi.org/10.1016/j.jallcom.2018.11.352
  • [13] Pan, Y., Wang, S., Zhang, X. & Jia, L. First-principles investigation of new structure, mechanical and electronic properties of Mo-based silicides. Ceram. Int. 44, 1744-1750 (2018). https://doi.org/10.1016/j.ceramint.2017.10.106
  • [14] Huang, J., Xing, H., Wen, Y. & Sun, J. Effect of Fe ternary addition on ductility of NiAl intermetallic alloy. Rare Met. 30, 316-319 (2011). https://doi.org/10.1007/s12598-011-0292-7
  • [15] Sugilal, G. et al. Indigenous development of induction skull melting technology for electromagnetic processing of refractory and reactive metals and alloys. Mater. Today Proc. 3, 2942-2950 (2016). https://doi.org/10.1016/j.matpr.2016.09.007
  • [16] Akai, H. Fast Korringa-Kohn-Rostoker coherent potential approx-imation and its application to FCC Ni-Fe systems. J. Phys. Condens. Matter 1, 8045-8064 (1989). https://doi.org/10.1088/0953-8984/1/43/006
  • [17] Nagy, Á. Density functional. Theory and application to atoms and molecules. Phys. Rep. 298, 1-79 (1998). https://doi.org/10.1016/S0370-1573(97)00083-5
  • [18] Zarhri, Z., Ziat, Y., El Rhazouani, O., Benyoussef, A. & Elkenz, A. Titanium atoms dimerization phenomenon and magnetic properties of titanium-antisite (TiO) and chromium doped rutile TiO2, ab-initio calculation. J. Phys. Chem. Solids 94, 12-16 (2016). https://doi.org/10.1016/j.jpcs.2016.03.002
  • [19] Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  • [20] Zarhri, Z. et al. Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects. J. Magn. Magn. Mater. 406, 212-216 (2016). https://doi.org/10.1016/j.jmmm.2016.01.029
  • [21] Pan, Y. & Wen, M. Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction. Int. J. Hydrogen Energy 43, 22055-22063 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.093
  • [22] Pan, Y., Li, Y. Q., Zheng, Q. H. & Xu, Y. Point defect of titanium sesquioxide Ti2O3 as the application of next generation Li-ion batteries. J. Alloys Compd. 786, 621-626 (2019). https://doi.org/10.1016/j.jallcom.2019.02.054
  • [23] Pan, Y. Theoretical discovery of high capacity hydrogen storage metal tetrahydrides. Int. J. Hydrogen Energy 44, 18153-18158 (2019). https://doi.org/10.1016/j.jallcom.2019.02.054
  • [24] Pan, Y. Vacancy-enhanced cycle life and electrochemical perfor-mance of lithium-rich layered oxide Li2RuO3. Ceram. Int. 45, 18315-18319 (2019). https://doi.org/10.1016/j.ceramint.2019.06.044
  • [25] Ziat, Y., Hammi, M., Zarhri, Z., Laghlimi, C. & El Rhazouani, O. Ferrimagnetism and ferromagnetism behavior in (C, Mn) co-doped SnO2 for microwave and spintronic: Ab initio investigation. J. Magn. Magn. Mater. 483, 219-223 (2019). https://doi.org/10.1016/j.jmmm.2019.03.084
  • [26] Liu, J., Cao, J., Lin, X., Song, X. & Feng, J. Microstructure and mechanical properties of diffusion bonded single crystal to polycrystalline Ni-based superalloys joint. Mater. Des. 49, 622-626 (2013). https://doi.org/10.1016/j.matdes.2013.02.022
  • [27] Zheng, L., Sheng, L. Y., Qiao, Y. X., Yang, Y. & Lai, C. Influence of Ho and Hf on the microstructure and mechanical properties of NiAl and NiAl-Cr(Mo) eutectic alloy. Mater. Res. Express 6, 046502 (2019). https://doi.org/10.1088/2053-1591/aaf8ea
  • [28] Sheng, L. Y. et al. Microstructure characteristics and compressive properties of NiAl-based multiphase alloy during heat treatments. Mater. Sci. Eng. A 528, 8324-8331 (2011). https://doi.org/10.1088/2053-1591/aaf8ea
  • [29] Sheng, L. et al. Effect of Au addition on the microstructure and mechanical properties of NiAl intermetallic compound. Intermetallics 18, 740-744 (2010). https://doi.org/10.1016/j.intermet.2009.10.015
  • [30] Wittmann, F. H. Crack formation and fracture energy of normal and high strength concrete. Sadhana 27, 413-423 (2002). https://doi.org/10.1007/BF02706991
  • [31] Ziat, Y. et al. First-principles study of magnetic and electronic properties of fluorine-doped Sn0.98Mn0.02O2 system. J. Supercond. Novel Magn. 29, 2979-2985 (2016). https://doi.org/10.1007/s10948-016-3609-9
  • [32] Han, Y.-J. & Park, S.-J. Influence of nickel nanoparticles on hydro-gen storage behaviors of MWCNTs. Appl. Surf. Sci. 415, 85-89 (2017). https://doi.org/10.1016/j.apsusc.2016.12.108
  • [33] Tsao, T.-K. & Yeh, A.-C. The thermal stability and strength of highly alloyed Ni3Al. Mater. Trans. 56, 1905-1910 (2015). https://doi.org/10.2320/matertrans.M2015298
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-014c05cb-8b65-490e-b095-2ce612377c6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.