Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study aimed at measuring the influence of a wide range of oxytetracycline concentrations, with particular attention to the low levels of the antibiotic on cyanobacteria Microcystis aeruginosa and Nodularia spumigena, diatom Phaeodactylum tricornutum and the model green algae Chlorella vulgaris by conducting prolonged toxicity tests (lasting 10 days). Standard measurements (cell number, optical density, chlorophyll a concentration) were combined with photosynthetic parameters measurements. The obtained results show that concentrations of oxytetracycline present in the environment can affect tested microorganisms. It was found to decrease photosystem II efficiency and disrupt the photosynthesis process. A careful interpretation of photosynthetic parameters allowed a better understanding of the mode of action of oxytetracycline in relation to non-target photoautotrophic organisms like cyanobacteria and microalgae. In conclusion, it would appear that the use of standard chronic toxicity tests (72 h) does not allow to accurately and reliably assess the chronic impact of bioactive compounds including drugs and their metabolites on water organisms. On this basis, we recommend the application of extended duration tests.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
214--225
Opis fizyczny
Bibliogr. 67 poz., tab., wykr.
Twórcy
autor
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
- Department of Plant Physiology and Biotechnology, University of Gdańsk, Gdańsk, Poland
autor
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
- [1] Agwuh, K. N., MacGowan, A., 2006. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother. 58 (2), 256-265, https://doi.org/10.1093/jac/dkl224.
- [2] Ando, T., Nagase, H., Eguchi, K., Hirooka, T., Nakamura, T., Miyamoto, K., Hirata, K., 2007. A novel method using cyanobacteria for ecotoxicity test of veterinary antimicrobial agents. Environ. Toxicol. Chem. 26 (4), 601-606.
- [3] Arnold, K. E., Brown, A. R., Ankley, T. G., Sumpter, J. P., 2014. Medicating the environment: assessing risks of pharmaceuticals to wildlife and ecosystem. Philos. Trans. R. Soc. B. Biol. Sci. 369 (1656), 1-11, http://dx.doi.org/10.1098/rstb.2013.0569.
- [4] Bischoff, H. W., Bold, H. C., 1963. Phycological Studies IV. Some Soil Algae from Enchanted Rock and Related Algal Species. Univ. Texas Publ. 6318, 1-95.
- [5] Björlenius, B., Ripszám, M., Haglund, P., Lindberg, R. H., Tysklind, M., Fick, J., 2018. Pharmaceutical residues are widespread in Baltic Sea coastal and offshore waters - Screening for pharmaceuticals and modelling of environmental concentrations of carbamazepine. Sci. Total. Environ. 633, 1496-1509, https://doi.org/10.1016/j.scitotenv.2018.03.276.
- [6] Borecka, M., Białk-Bielińska, A., Siedlewicz, G., Kornowska, K., Kumirska, J., Stepnowski, P., Pazdro, K., 2013. A new approach for the estimation of expanded uncertainty of results of an analytical method developed for determining antibiotics in seawater using solid-phase extraction disks and liquid chromatography coupled with tandem mass spectrometry technique. J. Chrom. A. 1304, 138-146, https://doi.org/10.1016/j.chroma.2013.07.018.
- [7] Borecka, M., Siedlewicz, G., Haliński, Ł. P., Sikora, K., Pazdro, K., Stepnowski, P., Białk-Bielińska, A., 2015. Contamination of the southern Baltic Sea waters by the residues of selected pharmaceuticals: method development and field studies. Mar. Pollut. Bull. 94, 62-71, https://doi.org/10.1016/j.marpolbul.2015.03.008.
- [8] Borecka, M., Białk-Bielińska, A., Haliński, Ł, Pazdro, K., Stepnowski, P., Stolte, S., 2016. The influence of salinity on the toxicity of selected sulfonamides andtrimethoprim towards the green algae Chlorella vulgaris. J Haz. Mat. 308, 179-186, http://dx.doi.org/10.1016/j.jhazmat.2016.01.041.
- [9] Boxall, A. B. A., Fogg, L. A., Blackwell, P. A., Kay, P., Pemberton, E. J., Croxford, A., 2004. Veterinary medicines in the environment. Rev. Environ. Contam. Toxicol. 180, 1-91.
- [10] Capone, D. G., Weston, D. P., Millera, V., Shoemakera, C., 1996. Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture 145, 55-75, https://doi.org/10.1016/S0044-8486(96)01330-0.
- [11] Chen, H., Liu, S., Xu, X. R., Zhou, G. J., Liu, S. S., Yue, W. Z., Sun, K. F., Ying, G. G., 2015. Antibiotics in the coastal environment of the Hailing Bay region, South China Sea: spatial distribution, source analysis and ecological risks. Mar. Pollut. Bull. 95 (1), 365-373, https://doi.org/10.1016/j.marpolbul.2015.04.025.
- [12] Chen, Y., Wang, Z., Shen, Z., Ou, Z., Xu, D., Yuan, Z., Zhou, S., 2017. Effects of Oxytetracycline on Growth and Chlorophyll Fluorescence in Rape (Brassica campestris L.). Pol. J. Environ. Stud. 26 (3), 995-1001, https://doi.org/10.15244/pjoes/67575.
- [13] de Orte, M. R., Carballeira, C., Viana, I. G., Carballeira, A., 2013. Assessing the toxicity of chemical compounds associated with marine land-based fish farms: The use of mini-scale microalgal toxicity tests Chem. Ecol. 29 (6), 554-563, https://doi.org/10.1080/02757540.2013.790381.
- [14] Dewez, D., Goltsev, V., Kalaji, H. M., Oukarroum, A., 2018. Inhibitory effects of silver nanoparticles on photosystem II performance in Lemna gibba probed by chlorophyll fluorescence. Curr. Plant. Biol. 16, 15-21, https://doi.org/10.1016/j.cpb.2018.11.006.
- [15] EC, 2003 European Commission Technical Guidance Document in Support of Commission Directive 93//67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No. 1488/94 on Risk Assessment for Existing Substance, Part II Retrieved 10 July, 2019, from https://echa.europa.eu/documents/10162/16960216/tgdpart2_2ed_en.pdf.
- [16] Edler, L., 1979. Recommendations for marine biological studies in the Baltic Sea: Phytoplankton and chlorophyll. Baltic Mar. Biol. Publ. 5, 1-38.
- [17] Eguchi, K., Nagase, H., Ozawa, M., Endoh, Y. S., Got, K., Hirata, K., Miyamoto, K., Yoshimura, H., 2004. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57, 1733-1738, https://doi.org/10.1016/j.chemosphere.2004.07.017.
- [18] Fu, L., Huang, T., Wang, S., Wang, X., Su, L., Li, C., Zhao, Y., 2017. Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action. Chemosphere 168, 217-222, https://doi.org/10.1016/j.chemosphere.2016.10.043.
- [19] Gao, Q. T., Tam, N. F. Y., 2011. Growth, photosynthesis and antioxidant responses of two microalgal species, Chlorella vulgaris and Selenastrum capricornutum, to nonylphenol stress. Chemosphere 82 (3), 346-354, https://doi.org/10.1016/j.chemosphere.2010.10.010.
- [20] González-Pleiter, M., Gonzalo, S., Rodea-Palomares, I., Legane, F., Rosal, R., Boltes, K., Marco, E., Fernandez-Piñas, F., 2013. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment. Water Res. 47, 2050-2064, https://doi.org/10.1016/j.watres.2013.01.020.
- [21] Guillard, R. R. L., 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith, W. L., Chanley, M. H. (Eds.), Culture of Marine Invertebrate Animals. Plenum Press, New York, 26-60.
- [22] Gulkowska, A., He, Y., So, M. K., Yeung, L., Giesy, J. P., Lam, P. K., Martin, M., Richardson, B. J., 2007. The occurrence of selected antibiotics in Hong Kong coastal waters. Mar. Poll. Bull. 54, 1287-1293, https://doi.org/10.1016/j.marpolbul.2007.04.008.
- [23] Guo, J., Selby, K., Boxall, A., 2016. Comparing the sensitivity of chlorophytes, cyanobacteria and diatoms to major-use antibiotics. Environ. Toxicol. Chem. 35, 2587-2596, https://doi.org/10.1002/etc.3430.
- [24] Halling-Sørensen, B., 2000. Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40 (7), 731-739, https://doi.org/10.1016/S0045-6535(99)00445-2.
- [25] Hernando, M. D., Mezcua, M., Fernandez-Alba, A. R., Barcelo, D., 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69, 334-342, https://doi.org/10.1016/j.talanta.2005.09.037.
- [26] Holten Lüzhøft, H. C., Halling-Sørensen, B., Jørgensen, S. E., 1999. Algal toxicity of antibacterial agents applied in Danish fish farming. Arch. Environ. Contam. Toxicol. 36, 1-6, https://doi.org/10.1007/s002449900435.
- [27] Ji, K., Kim, S., Han, S., Seo, J., Lee, S., Park, Y., Choi, K., Kho, Y-L., Kim, P.-G., Park, J., Choi, K., 2012. Risk assessment of chlortetracycline, oxytetracycline, sulfamethazine, sulfathiazole, and erythromycin in aquatic environment: Are the current environmental concentrations safe? Ecotoxicology 21, 2031-2050, https://doi.org/10.1007/s10646-012-0956-6.
- [28] Jiao, S., Zheng, S., Yin, D., Wang, L., Chen, L., 2008. Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process. J. Environ. Sci. 20 (7), 806-813, https://doi.org/10.1016/S1001-0742(08)62130-0.
- [29] Karło, A., Wilk, A., Ziembińska-Buczyńska, A., Surmacz-Górska, J., 2015. Cultivation parameters adjustment for Effective algal biomass production. Rocz. Ochr. Śr. 17, 275-288.
- [30] Kolar, B., Arnuš, L., Jeretin, B., Gutmaher, A., Drobne, D., Durjava, M. K., 2014. The toxic effect of oxytetracycline and trimethoprim in the aquatic environment. Chemosphere 115, 75-80, https://doi.org/10.1016/j.chemosphere.2014.02.049.
- [31] Kołodziejska, M., Maszkowska, J., Białk-Bielińska, A., Steudte, S., Kumirska, J., Stepnowski, P., Stolte, S., 2013. Aquatic toxicity of four veterinary drugs commonly applied in fish farming and animal husbandry. Chemosphere 92, 1253-1259, https://doi.org/10.1016/j.chemosphere.2013.04.057.
- [32] Krzemińska, I., Pawlik-Skowrońska, B., Trzcińska, M., Tys, J., 2014. Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst. Eng. 37, 735-741, https://doi.org/10.1007/s00449-013-1044-x.
- [33] Kümmerer, K., 2009. Antibiotics in the environment. In: Kümmerer, K. (Ed.), Pharmaceuticals in the Environment. Springer, Berlin, 75-88.
- [34] Kümmerer, K., 2010. Pharmaceuticals in the Environment. Annual Review of Environment and Resources 35 (1), 57-75, http://dx.doi.org/10.1146/annurev-environ-052809-161223.
- [35] Lalumera, G. M., Calamari, D., Galli, P., Castiglioni, S., Crosa, G., Fanelli, R., 2004. Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy. Chemosphere 54 (5), 661-668, https://doi.org/10.1016/j.chemosphere.2003.08.001.
- [36] Leal, J. F., Esteves, V. I., Santos, E. B. H., 2016. Use of sunlight to degrade oxytetracycline in marine aquaculture’s waters. Environ. Pollut. 213, 932-939, http://dx.doi.org/10.1016/j.envpol.2016.03.040.
- [37] Lorenzen, C. J., 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol. Oceanogr. 12, 343-346, https://doi.org/10.4319/lo.1967.12.2.0343.
- [38] Lyman, J., Fleming, R. H., 1940. Composition of sea water. J. Mar. Res. 3, 134-146.
- [39] McArdell, C. S., Molnar, E., Suter, M. J. F., Giger, M., 2003. Occurrence and Fate of Macrolide Antibiotics in Wastewater Treatment Plants and in the Glatt Valley Watershed, Switzerland. Environ. Sci. Technol. 37 (24), 5479-5486, https://doi.org/10.1021/es034368i.
- [40] Nödler, K., Voutsa, D., Licha, T., 2014. Polar organic micropollutants in the coastal environment of different marine systems. Mar Pollut. Bull. 85, 50-59, https://doi.org/10.1016/j.marpolbul.2014.06.024.
- [41] Oh, M-H., Kang, Y., Lee, C., Chung, I., 2005. Effects of Six Antibiotics on the Activity of the Photosynthetic Apparatus and Ammonium Uptake of Thallus of Porphyra yezoensis. Algae 20 (2), 121-125, https://doi.org/10.4490/algae.2005.20.2.121.
- [42] Pan, X., Deng, C., Zhang, D., Wang, J., Mu, G., Chen, Y., 2008. Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests. Aquat Toxicol. 89 (4), 207-213, https://doi.org/10.1016/j.aquatox.2008.06.018.
- [43] Pazdro, K., Borecka, M., Siedlewicz, G., Białk-Bielińska, A., Stepnowski, P., 2016. Analysis of the Residues of Pharmaceuticals in Marine Environment: State-of-the-art, Analytical Problems and Challenges. Curr. Anal. Chem. 12 (3), 202-226, http://dx.doi.org/10.2174/1573411012666151009193536.
- [44] Pereira, J. H. O. S., Vilar, V. J. P., Borges, M. T., González, O., Esplugas, S., Boaventura, R. A. R., 2011. Photocatalytic degradation of oxytetracycline using TiO2 under natural and simulated solar radiation. Sol. Energy. 85 (11), 2732-2740, https://doi.org/10.1016/j.solener.2011.08.012.
- [45] Rachmilevitch, M., DaCosta, Huang, B., 2006. Physiological and bio-chemical indicators for stress tolerance. In: Huang, B. (Ed.), Plant-Environment Interactions. Taylor & Francis, Boca Raton, FL, 321-355.
- [46] Santos, L. H. M. L. M., Araújo, A. N., Fachini, A., Pena, A., Delerue-Matos, C., Montenegro, M. C. B. S. M., 2010. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Haz. Mat. 175, 45-95, https://doi.org/10.1016/j.jhazmat.2009.10.100.
- [47] Schmidt, A. S., Bruun, M. S., Dalsgaard, I., Pedersen, K., Larsen, J. L., 2000. Occurrence of antimicrobial resistance in fish-pathogenic and environmental bacteria associated with four Danish rainbow trout farms. Appl. Environ. Microbiol. 66 (11), 4908-4915, https://doi.org/10.1128/AEM.66.11.4908-4915.2000.
- [48] Seoane, M., Rioboo, C., Herrero, C., Cid, Á., 2014. Toxicity induced by three antibiotics commonly used in aquaculture on the marine microalga Tetraselmis suecica (Kylin) Butch. Mar. Environ. Res. 101, 1-7, https://doi.org/10.1016/j.marenvres.2014.07.011.
- [49] Siedlewicz, G., Pazdro, K., Borecka, M., Kornowska, K., Białk-Bielińska, A., Stepnowski, P., 2014. Determination of Tetracyclines Residues in the Gulf of Gdansk (Southern Baltic Sea) Sediments Using a Tandem Solid-Phase Extraction with Liquid Chromatography Coupled with Tandem Mass Spektrometry. In: Zieliński, T., Pazdro, K., Dragan-Górska, A., Weydmann, A. (Eds.), Insights on Environmental Changes. GeoPlanet: Earth and Planetary Sciences. Springer, Switzerland, 33-45.
- [50] Siedlewicz, G., Borecka, M., Białk-Bielińska, A., Sikora, K., Stepnowski, P., Pazdro, K., 2016. Determination of antibiotic residues in southern Baltic Sea sediments using a tandem solid-phase extraction and liquid chromatography coupled with tandem mass spectrometry. Oceanologia 58 (3), 221-234, https://doi.org/10.1016/j.oceano.2016.04.005.
- [51] Siedlewicz, G., Borecka, M., Białk-Bielińska, A., Winogradow, K., Stepnowski, P., Pazdro, K., 2018. Presence, concentrations and risk assessment of selected antibiotic residues in sediments and near-bottom waters collected from the Polish coastal zone in the southern Baltic Sea - Summary of 3 years of studies. Mar. Pollut. Bull. 129 (2), 787-801, https://doi.org/10.1016/j.marpolbul.2017.10.075.
- [52] Stanier, R. Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G., 1971. Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol. Rev. 35, 171-205.
- [53] Strasser, R. J., Srivastava, A., Tsimilli-Michael, M., 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus, M., Pathre, U., Mohanty, P. (Eds.), Probing Photosynthesis: Mechanism, Regulation and Adaptation. Taylor and Francis, UK, 445-483.
- [54] Strasser, R. J., Tsimilli-Michael, M., Srivastava, A., 2004. Analysis of the chlorophyll a fluorescence transient. In: Papadogeorgiou, GC., Govindjee (Eds.), Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer, Netherlands, 321-362.
- [55] Strickland, J. D. H., Parsons, T. R., 1968. A practical handbook of sea-water analysis. Fish Res. Board Can. Bull. 169. Fish Res. Board of Canada, Ottawa, 293 pp.
- [56] Strickland, J. D. H., Parsons, T. R., 1972. A practical handbook of sea-water analysis. Fish Res. Board Can. Bull. 167, 2nd edn., Fish Res. Board of Canada, Ottawa, 310 pp.
- [57] Tsiaka, P., Tsarpali, V., Ntaikou, I., Kostopoulou, M. N., Lyberatos, G., Dailianis, S., 2013. Carbamazepine-mediated prooxidant effects on the unicelular marine algal species Dunaliella tertiolecta and the hemocytes of mussel Mytilus galloprovincialis. Ecotoxicology 22, 1208-1220, https://doi.org/10.1007/s10646-013-1108-3.
- [58] Van Boeckel, T. P., van Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A., Laxminarayan, R., 2014. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases 14, 742-750, https://doi.org/10.1016/S1473-3099(14)70780-7.
- [59] Van der Grinten, E., Pikkemaat, M. G., Van den Brandhof, E. J., Stroomberg, G. J., Kraak, M. H. S., 2010. Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere 80, 1-6, https://doi.org/10.1016/j.chemosphere.2010.04.011.
- [60] Wang, J., Hu, J., Zhang, S., 2010. Studies on the sorption of tetracycline onto clays and marine sediment from seawater. J. Colloid Interface Sci. 349, 578-582, https://doi.org/10.1016/j.jcis.2010.04.081.
- [61] Wille, K., Noppe, H., Verheyden, K., Vanden Bussche, J., De Wulf, E., Van Caeter, P., Janssen, C. R., De Brabander, H. F., Vanhaecke, L., 2010. Validation and application of an LC-MS/MS method for the simultaneous quantification of 13 pharmaceuticals in seawater. Anal. Bioanal. Chem. 397, 1797-1808, https://doi.org/10.1007/s00216-010-3702-z.
- [62] Xu, D., Xiao, Y., Pan, H., Me, i Y., 2019. Toxic effects of tetracycline and its degradation products on freshwater green algae. Ecotoxicol. Environ. Safe. 174, 43-47, https://doi.org/10.1016/j.ecoenv.2019.02.063.
- [63] Xu, J., Zhang, Y., Zhou, C, Guo, C., Wang, D., Du, P., Luo, Y., Wan, J., Meng, W., 2014. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China. Sci. Total Environ. 497-498, 267-273, https://doi.org/10.1016/j.scitotenv.2014.07.114.
- [64] Yang, Y., Fu, J., Peng, H., Hou, L., Liu, M., Zhou, J. L., 2011. Occurrence and phase distribution of selected pharmaceuticals in the Yangtze Estuary and its coastal zone. J. Hazard. Mater. 190, 588-596, https://doi.org/10.1016/j.jhazmat.2011.03.092.
- [65] Zhang, W., Zhang, M., Lin, K., Sun, W., Xiong, B., Guo, M., Cui, X., Fu, R., 2012. Ecotoxicological effect of carbamazepine on Scenedesmus obliquus and Chlorella pyrenoidosa. Environ. Toxicol. Pharmacol. 33 (2), 344-352, https://doi.org/10.1016/j.etap.2011.12.024.
- [66] Zushi, K., Kajiwara, S., Matsuzoe, N., 2012. Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. Scientia Horticulturae 148, 39-46, https://doi.org/10.1016/j.scienta.2012.09.022.
- [67] Żak, A., Musiewicz, K., Kosakowska, A., 2012. Allelopathic activity of the Baltic cyanobacteria against microalgae, Estuar. Coast. Shelf Sci. 112, 4-10, https://doi.org/10.1016/j.ecss.2011.10.007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-014b3360-c8a4-40ab-b9b0-30011feb7342