PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of vibration frequency on shear punch strength and wear resistance of AZ70 magnesium matrix composite manufactured by FSVP

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A friction stir vibration processing (FSVP) with different vibration frequencies (20 Hz, 40 Hz, and 80 Hz) was employed for the fabrication of AZ70/ZrO2–CeO2 surface composite with the aim of improving mechanical and wear performance. Thus, the influence of vibration frequency as a vital parameter on the microstructure and reinforcement distribution, shear punch strength (SPT), and wear behavior of the composites was investigated. The results indicated that the material flow, agglomeration of particles, and dislocation density were influenced by the increasing vibration frequency that can be contributed to the successive mechanical stirring-assisted plastic deformation/strain and further grain refinement. It was also demonstrated that when vibration frequency was increased, the shear punch strength (by about 34%) and wear resistance (by about 44%) of the developed composites improved.
Rocznik
Strony
art. no. e58, 2024
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering, Xijing University, Xi’an 710123, China
autor
  • Industrial Technology Center, Hebei Petroleum University of Technology, Chengde 067000, China
  • School of Mechanical Engineering, Xijing University, Xi’an 710123, China
  • Department of Materials Engineering, South Tehran Branch, Islamic Azad University, Tehran 1459853849, Iran
autor
  • School of Mechanical Engineering, Xijing University, Xi’an 710123, China
autor
  • School of Mechanical Engineering, Xijing University, Xi’an 710123, China
autor
  • College of Mechanical Engineering, Xi’an Aeronautical University, Xi’an 710077, Shaanxi, China
autor
  • School of Mechanical Engineering, Xijing University, Xi’an 710123, China
Bibliografia
  • 1. Paidar M, Bokov D, Mehrez S, Ojo OO, Ramalingam VV, Memon S. Improvement of mechanical and wear behavior by the development of a new tool for the friction stir processing of Mg/B4C composite. Surf Coat Technol. 2021;426:127797.
  • 2. Torabi Parizi M, Ebrahimi GR, Ezatpour HR, Paidar M. The structure effect of carbonaceous reinforcement on the microstructural characterization and mechanical behavior of AZ80 magnesium alloy. J Alloys Compd. 2019;809:151682.
  • 3. Ahmed MMZ, El-Sayed Seleman MM, Fydrych D, Çam G. Friction stir welding in the aerospace industry: The current progress and state-of-the-art review. Materials. 2023;16:2971.
  • 4. Kashaev N, Ventzke V, Cam G. Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications. J Manuf Process. 2018;36:571-600.
  • 5. Cam G, Ipekoglu G. Recent developments in joining of aluminium alloys. Int J Adv Manuf Technol. 2017;91(5-8):1851-66.
  • 6. Ahmed MMZ, El-Sayed Seleman MM, Fydrych D, Çam G. A review on friction stir welding of dissimilar Al- and Mg-alloys: Scientometric analysis and strategies for achieving high-quality joints. J Magnesium Alloys. 2023. https://doi.org/10.1016/j.jma.2023.09.039.
  • 7. Cam G. Friction stir welded structural materials: beyond Alalloys. Int Mater Rev. 2011;56(1):1-48.
  • 8. Khaliq A, Yusof F, Chen Z, Mohd Isa MS, Cam G. A comprehensive review on friction stir welding of aluminum with magnesium: a new insight on joining mechanisms by interfacial enhancement. J Mater Res Technol (JMR&T). 2023;27:4595-624.
  • 9. Kucukomeroglu T, Aktarer SM, Ipekoglu G, Cam G. Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel. IOP Conf Ser Mater Sci Eng. 2019;629:012010.
  • 10. Çam G, Javaheri V, Heidarzadeh A. Advances in FSW and FSSW of dissimilar Al-alloy plates. J Adhes Sci Technol. 2022;2022:162-94.
  • 11. Heidarzadeh A, Mironov S, Kaibyshev R, Çam G, Simar A, Gerlich A, Khodabakhshi F, Mostafaei A, Field DP, Robson JD, Deschamps A, Withers PJ. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution. Prog Mater Sci. 2021;117: 100752.
  • 12. Tian C, Dai X, Shi L, Chuansong Wu. Enhancing the mechanical properties in the weld nugget zone of friction stir welded 2195 Al-Li alloy joint via superimposing ultrasonic vibration. Vacuum. 2022;206: 111540.
  • 13. Liang J, Li H, Qi L, Tian W, Li X, Chao X, Wei J. Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion. J Alloy Compd. 2017;728:282-8.
  • 14. Abbasi M, Givi M, Bagheri B. Application of vibration to enhance efficiency of friction stir processing. Trans Nonferrous Metals Soc China. 2019;29:1393-400.
  • 15. Muhammad NA, Wu CS, Su H. Concurrent influences of tool offset and ultrasonic vibration on the joint quality and performance of dissimilar Al/Cu friction stir welds. J Mater Res Technol. 2021;14:1035-51.
  • 16. Liu XC, Wu CS, Padhy GK. Improved weld macrosection, microstructure and mechanical properties of 2024Al-T4 butt joints in ultrasonic vibration enhanced friction stir welding. Sci Technol Weld Joining. 2015;20:345-52.
  • 17. Liu T, Gao S, Ye W, Shi L, Kumar S, Qiao J. Achievement of high-quality joints and regulation of intermetallic compounds in ultrasonic vibration enhanced friction stir lap welding of Aluminum/Steel. J Market Res. 2023;25:5096-109.
  • 18. Lv XQ, Wu CS, Padhy GK. Diminishing intermetallic compound layer in ultrasonic vibration enhanced friction stir welding of aluminum alloy to magnesium alloy. Mater Lett. 2017;203:81-4.
  • 19. Gao S, Wu CS, Padhy GK. Material flow, microstructure and mechanical properties of friction stir welded AA 2024-T3 enhanced by ultrasonic vibrations. J Manuf Process. 2017;30:385-95.
  • 20. Liu Y, Bai Y, Chen J, Chen H, Zhu Z, Li Y. Control of intermetallic compounds in ultrasonic-assisted Sn soldering of Mg/Al alloys. Mater Des. 2022;223: 111235.
  • 21. Zhang Z, He C, Li Y, Lei Yu, Zhao Su, Zhao X. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints. J Mater Sci Technol. 2020;43:1-13.
  • 22. Liu T, Gao S, Shen X, Sun Z, Shi L, Kumar S, Yang C. Acoustic effect on the joint quality and process of friction stir lap welding of aluminum to steel. Mater Today Commun. 2023;35: 106184.
  • 23. Muhammad NA, Geng P, Wu CS, Ma N. Unravelling the ultrasonic effect on residual stress and microstructure in dissimilar ultrasonic-assisted friction stir welding of Al/Mg alloys. Int J Mach Tools Manuf. 2023;186:104004.
  • 24. Huang L, Paidar M, Zain AM, Refaai MRA, Abdullaev S, Šlapáková M. Effect of processing environment during friction stir processing of AZ31/(ZrO2+CuO)p surface composite on the mechanical and tribological performance. J Mater Res Technol. 2024;28:1891-9.
  • 25. Liu XC, Li WT, Zhou YQ, Li YZ, Pei XJ, Shen ZK, Wang QH. Multiple effects of forced cooling on joint quality in coolant-assisted friction stir welding. J Market Res. 2023;25:4264-76.
  • 26. Liu S, Paidar M, Mehrez S, Ojo OO, Mahariq I, Elbadawy I. Development of AA6061/316 stainless steel surface composites via friction stir processing: Effect of tool rotational speed. Mater Character. 2022;192: 112215.
  • 27. Dinaharan I, Zhang S, Chen G, Shi Q. Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductility prepared using friction stir processing. Mater Sci Eng, A. 2020;772: 138793.
  • 28. Maji P, Nath RK, Paul P, Bhogendro Meitei RK, Ghosh SK. Effect of processing speed on wear and corrosion behavior of novel MoS2 and CeO2 reinforced hybrid aluminum matrix composites fabricated by friction stir processing. J Manuf Process. 2021;69:1-11.
  • 29. Jamali A, Mirsalehi SE. Production of AA7075/ZrO2 nanocomposite using friction stir processing Metallurgical structure, mechanical properties and wear behavior. CIRP J Manuf Sci Technol. 2022;37:55-69.
  • 30. Mao W, Paidar M, Vaira Vignesh R, Kharche NA, Mohanavel V, Zain AM. Exploring the impact of vibration on the tribological and mechanical performance of friction stir processing of AZ80/(MnO + ZrO2)p surface composite. Mater Lett. 2024;358:135794.
  • 31. Narimani M, Lotfi B, Sadeghian Z. Evaluation of the microstructure and wear behaviour of AA6063-B4C/TiB2 mono and hybrid composite layers produced by friction stir processing. Surf Coat Technol. 2016;285:1-10.
  • 32. Li H, Paidar M, Ojo OO, Vaira Vignesh R, Iswandi I, Mehrez S, Zain AM, Mohanavel V. Effect of tool profile on wear and mechanical behaviors of CeO2 and ZrO2-reinforced hybrid magnesium matrix composite developed via FSP technique. J Manuf Process. 2023;94:2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01489ebc-315b-4c39-8d5e-329b4325e3c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.