Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents a review on vision-based solutions for driver assistance. These solutions support the driver to keep safe travel conditions. They use diverse sensing modalities for the recognition of the environment around the vehicle. Upon detection a critical safety situation they supply the driver with the warning. Four assistance systems have been addressed: TSR - Traffic Sign Recognition, CAV - Collision Avoidance, LDW - Lane Departure Warning, and driver fatigue detection. Their structure and some existing approaches are presented. Furthermore, a solution for lane detection and another one for a driver fatigue detection are proposed in the article. They are prepared as the combination of existing image processing algorithms with the aim of presentation the ease of own limited solution creation. For the real-world and diverse working scenarios they would require a great deal of improvements.
Rocznik
Tom
Strony
35--44
Opis fizyczny
Bibliogr. 31 poz., fot.
Twórcy
autor
- Faculty of Computer Science and Information Technology, West Pomeranian University of Technology, Szczecin, Poland
Bibliografia
- [1] Wu, J., Cui, Z., Chen, J., Zhang, G.: A Survey on Video-based Vehicle Behavior Analysis Algorithms. Journal of Multimedia, 7(3), pp. 223–230, 2012.
- [2] Bar Hillel, A., Lerner, R., Levi, D., Raz, G.: Recent progress in road and lane detection: a survey. Machine Vision and Applications, 25(3), pp. 727–745, 2014. ISSN 0932-8092.
- [3] Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. Neural Networks, 32(0), pp. 323 – 332, 2012. ISSN 0893-6080. Selected Papers from fIJCNNg 2011.
- [4] Forczmanski, P.: Recognition of occluded traffic signs based on two-dimensional linear discriminant analysis. Archives of Transport System Telematics, 6(3), pp. 10–13, 2011.
- [5] Yang, H.-M., Liu, C.-L., Liu, K.-H., Huang, S.-M.: Traffic Sign Recognition in Disturbing Environments. In: Zhong, N., Ra, Z., Tsumoto, S., Suzuki, E. (eds.), Foundations of Intelligent Systems, volume 2871 of Lecture Notes in Computer Science, pp. 252–261. Springer Berlin Heidelberg, 2003. ISBN 978-3-540-20256-1.
- [6] Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pp. 886–893. INRIA, IEEE Computer Society Washington, DC, USA, 2005.
- [7] Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pp. I–511–I–518 vol.1. 2001. ISSN 1063-6919.
- [8] McCall, J., Trivedi, M.: Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation. Intelligent Transportation Systems, IEEE Transactions on, 7(1), pp. 20–37, 2006. ISSN 1524-9050.
- [9] Borkar, A., Hayes, M., Smith, M., Pankanti, S.: A layered approach to robust lane detection at night. In: Computational Intelligence in Vehicles and Vehicular Systems, 2009. CIVVS ’09. IEEE Workshop on, pp. 51–57. 2009.
- [10] Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electronic Imaging, 13(1), pp. 146–168, 2004.
- [11] Kreucher, C., Lakshmanan, S.: LANA: a lane extraction algorithm that uses frequency domain features. Robotics and Automation, IEEE Transactions on, 15(2), pp. 343–350, 1999. ISSN 1042-296X.
- [12] Isermann, R., Mannale, R., Schmitt, K.: Collision-avoidance systems PRORETA: Situation analysis and intervention control. Control Engineering Practice, 20(11), pp. 1236 – 1246, 2012. ISSN 0967-0661. Special Section: Wiener-Hammerstein System Identification Benchmark.
- [13] Aufrere, R., Gowdy, J., Mertz, C., Thorpe, C., Wang, C.-C., Yata, T.: Perception for collision avoidance and autonomous driving. Mechatronics, 13(10), pp. 1149–1161, 2003.
- [14] Chang, B. R., Tsai, H. F., Young, C.-P.: Intelligent data fusion system for predicting vehicle collision warning using vision/GPS sensing. Expert Systems with Applications, 37(3), pp. 2439 – 2450, 2010. ISSN 0957-4174.
- [15] Stein, G., Mano, O., Shashua, A.: Vision-based ACC with a single camera: bounds on range and range rate accuracy. In: Intelligent Vehicles Symposium, 2003. Proceedings. IEEE, pp. 120–125. 2003.
- [16] Hu, W., Xiao, X., Xie, D., Tan, T.: Traffic accident prediction using vehicle tracking and trajectory analysis. In: Intelligent Transportation Systems, 2003. Proceedings. 2003 IEEE, volume 1, pp. 220–225 vol.1. 2003.
- [17] Aarthi, R., Padmavathi, S., Amudha, J.: Vehicle Detection in Static Images Using Color and Corner Map. In: Recent Trends in Information, Telecommunication and Computing (ITC), 2010 International Conference on, pp. 244–246. 2010.
- [18] Tang, Y., Zhang, C., Gu, R., Li, P., Yang, B.: Vehicle detection and recognition for intelligent traffic surveillance system. Multimedia Tools and Applications, pp. 1–16, 2015. ISSN 1380-7501.
- [19] Viola, P., Jones, M., Snow, D.: Detecting Pedestrians Using Patterns of Motion and Appearance. International Journal of Computer Vision, 63(2), pp. 153–161, 2005. ISSN 0920-5691.
- [20] OMalley, R., Jones, E., Glavin, M.: Detection of pedestrians in far-infrared automotive night vision using region-growing and clothing distortion compensation. Infrared Physics & Technology, 53(6), pp. 439 – 449, 2010. ISSN 1350-4495.
- [21] Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines: And Other Kernel-based Learning Methods. Cambridge University Press, New York, NY, USA, 2000. ISBN 0-521-78019-5.
- [22] Welch, G., Bishop, G.: An Introduction to the Kalman Filter. Technical Report TR 95-041, University of North Carolina at Chapel Hill, Department of Computer Science, 2006.
- [23] Krishnasree, V., Balaji, N., Rao, P. S.: A Real Time Improved Driver Fatigue Monitoring System. WSEAS Transactions on Signal Processing, 10, pp. 146–155, 2014.
- [24] Cyganek, B., Gruszczynski, S.: Hybrid computer vision system for drivers’ eye recognition and fatigue monitoring. Neurocomputing, 126, pp. 78–94, 2014.
- [25] Jackson, P., Hilditch, C., Holmes, A., Reed, N., Merat, N., Smith, L.: Fatigue and Road Safety: A Critical Analysis of Recent Evidence. Road Safety Web Publication, (21), 2011.
- [26] Nowosielski, A.: Mechanisms for increasing the efficiency of holistic face recognition systems. Przeglad Elektrotechniczny (Electrical Review, (R. 91 NR 2/2015), pp. 51–55, 2015.
- [27] Yang, M.-H., Kriegman, D., Ahuja, N.: Detecting faces in images: a survey. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(1), pp. 34–58, 2002. ISSN 0162-8828.
- [28] Viola, P., Jones, M.: Robust Real-Time Face Detection. International Journal of Computer Vision, 57(2), pp. 137–154, 2004. ISSN 0920-5691.
- [29] Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: Image Processing. 2002. Proceedings. 2002 International Conference on, volume 1, pp. I–900–I–903 vol.1. 2002. ISSN 1522-4880.
- [30] Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.: Learning Multi-scale Block Local Binary Patterns for Face Recognition. In: Lee, S.-W., Li, S. (eds.), Advances in Biometrics, volume 4642 of Lecture Notes in Computer Science, pp. 828–837. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-74548-8.
- [31] Kukharev, G., Nowosielski, A.: Face Recognition Using Simple Feature Extractors. Multimedia and Intelligent Techniques. Special Issue on Live Biometrics and Security, 1(1), pp. 87–98, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-014687cf-f125-42be-9e4d-feb88d9c85f0