PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of air profiling and frother concentration on a flotation bank performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The impact of air distribution on the metallurgical performance of a flotation bank operating with a mineral slurry having a moderate and high frother concentration is assessed. A flotation bank of two and three 5L Denver cells was implemented, and air flow was distributed down the bank as increasing and decreasing profiles. It was observed that when operating the bank configurations with a moderate frother concentration (10 ppm DF 400) the increasing profile provided the highest Cu enrichment ratio at the expense of a slight reduction in Cu recovery. This increase in selectivity was mainly due to a significant reduction in the water recovery and mass-pull in the first cell. When the bank operated with a high frother concentration, i.e., well beyond the CCC, a significant increase in water recovery was observed, producing a significant loss in selectivity that could not be compensated by air profiling.
Słowa kluczowe
Rocznik
Strony
art. no. 186274
Opis fizyczny
Bibliogr. 24 poz., fot., rys., tab., wykr.
Twórcy
  • Departamento de Ingeniería Metalúrgica, Universidad de Santiago, Chile
  • Departamento de Ingeniería Metalúrgica, Universidad de Santiago, Chile
autor
  • Departamento de Ingeniería Metalúrgica, Universidad de Santiago, Chile
  • COG Technologies 2
Bibliografia
  • ARIS, R., 1964. Discrete dynamic programming: An introduction to the optimization of staged processes. Blaisdell Publishing Company.
  • ASLAN, A., BOZ, H., 2010. Effect of air distribution profile on selectivity at zinc cleaner circuit. Minerals Engineering. 23, 11-13, 885-887.
  • AZGOMI, F., GOMEZ, C.O., FINCH, J.A., 2007. Correspondence of gas holdup and bubble size in presence of different frothers. Int. J. Miner. Process. 83, 1-11.
  • BHAMBHANI, T., ZENG, F., ARINAITWE, E., ALANIS, G., SANTANA, A., 2023. Switchable frother technology for improving cleaner circuit performance. Presented in Flotation 23, Cape Town.
  • BELLMAN, R., 1957. Dynamic Programming, Princeton University Press.
  • COOPER, M., SCOTT, D., DAHLKE, R., FINCH, J.A., GOMEZ, C.O, 2004. Impact of air distribution on banks in a Zn cleaning circuit. CIM Bulletin. 97, 1083, 1-6.
  • CHO, Y.S., LASKOWSKI, J.S., 2002. Effect of flotation frothers on bubble size and foam stability. Int. J. Miner. Process. 64, 2-3, 69-80.
  • FINCH, J.A., TAN, Y.H., 2022. Flotation bank profiling revisited. Minerals Engineering, 181, 107506.
  • HADLER, K., CILLIERS, J.J., 2009. The relationship between the peak in air recovery and flotation bank performance. Minerals Engineering, 22, 451-455.
  • HADLER, K., SMITH, C.D., CILLIERS, J.J., 2010. Recovery vs mass pull: the link to air recovery. Minerals Engineering, 23, 11-13, 994-1002.
  • HADLER, K., GREYLING, M., PLINT, N., CILLIERS, J.J., 2012. The effect of froth depth on air recovery and flotation performance. Min. Eng., 36-38, 248-253.
  • MALDONADO, M., ARAYA, R., FINCH, J.A., 2011. Optimizing flotation bank performance by recovery profiling. Minerals Engineering, 24, 939-943.
  • MARTINEZ, J., MALDONADO, M., GUTIERREZ, L., 2020. A method to predict water recovery rate in the collection and froth zone of flotation systems. Minerals, 10, 630.
  • MOYO, P., GOMEZ, C.O., FINCH, J.A., 2007. Characterizing frothers using water carrying rate. Canadian Metallurgical Quarterly, 46, 3, 215-220.
  • RAY, H., SZEKELY, J., 1973. Process Optimization: With Applications in Metallurgy and Chemical Engineering. John Wiley and Sons Inc.
  • SINGH, N., FINCH, J.A., 2014. Bank profiling and separation efficiency. Minerals Engineering, 66-68, 191-196.
  • SMITH, P.G., WARREN, L.J., 1989. Entrainment of particles into flotation froths. Miner. Process. Extr. Metal. Rev., 5, 123-145.
  • SUPOMO, A., YAP, E., ZHENG, X., BANINI, G., MOSHER, J., PARTANEN, A., 2008. PT Freeport Indonesia's masspull control strategy for rougher flotation. Minerals Engineering 21, 808-816.
  • WANG, L., PENG, Y., RUNGE., BRADSHAW, D., 2015. A review of entrainment: mechanisms, contributing factors and modelling in flotation. Min. Eng. 70, 77-91.
  • WILLS, B.A., FINCH., J.A., 2015. Will's Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. 8th Edition, Butterworth-Heinemann.
  • YIANATOS, J.B., FINCH, J.A., 1990. Gas holdup versus gas rate in the bubbly regime. Int. J. Miner. Process. 29, 1-2, 141-146.
  • YIANATOS, J., BERGH, L., CONDORI, P., AGUILERA, J., 2001. Hydrodynamic and metallurgical characterization of industrial flotation banks for control purposes. Min. Eng., 14, 9, 1033-1046.
  • ZANGOOI, A., GOMEZ, C.O., FINCH, J.A. 2010. Frother analysis in industrial flotation cells. Canadian Metallurgical Quarterly, 49, 4, 389-396.
  • ZANGOOI, A., GOMEZ, C.O., FINCH, J.A. 2017. Mapping frother distribution in industrial flotation circuits. Minerals Engineering, 113, 36-40.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0145352a-5999-43ab-b1fc-f255433f2352
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.