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This report summarizes an overview given at the XXXII Symposium on Hydroacoustics 

(SHA 2015) over several modeling techniques that are used in the context of military 

applications at the Research Department FWG of the German Bundeswehr Technical Centre 

for Ships and Naval Weapons, Maritime Technology and Research (WTD 71). For the 

modeling and understanding of sound propagation, a physical model consisting of a tank for 

the scaled measurements and the corresponding numerical simulation is presented. The basic 

formalism of the stochastic ray tracing of the German Navy sonar simulation MOCASSIN is 

explained and compared to traditional deterministic ray tracing, and this includes 

comparisons with measurements. Strategies for the approximate calculation of the sonar 

target strength of large underwater objects with the use of boundary element methods, fast 

multipole methods as well as a ray-based algorithm, are all presented here and the results of 

the calculations of several test objects are shown. 

 

 

INTRODUCTION 

One application in the broad field of hydroacoustics is the search for underwater objects 

with the use of sonar. Specific military interest lies in the detection of submarines in varying 

conditions. Shallow water regions pose particular problems, for example, places such as the 

Baltic Sea or the North Sea, where sound propagation can be very complex, depending on the 

environmental conditions. In order to perform this task successfully, one has to be able to 

predict the outcome of this search using simulations, whilst taking into account the current 
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environmental conditions. The simulation process can be roughly divided into two parts: the 

propagation of sound from the sonar to the target and back again, and the scattering of sound 

away from the target in question. Both problems can be treated with simulations but the 

mathematical methods involved are different. Here, three kinds of simulation are presented 

that have been developed at WTD 71: a physical modeling of sound propagation with both a 

scaled tank model with a corresponding numerical model, a stochastic ray tracing approach in 

use with the German Navy Sonar Simulation model MOCASSIN, as well as techniques 

providing the reliable and fast calculation of the sonar target strength of submerged objects. 

1. PHYSICAL AND NUMERICAL SIMULATIONS OF SOUND PROPAGATION 

In the research project “Virtual Ocean”, the development and validation of a phase-

exact sound propagation model for modern underwater applications are supported by high-

precision measurements performed in water-tank experiments. 

The newly developed PESSim (parabolic equation sound simulation) model is based on 

an approximation of the wave equation as a parabolic differential equation and allows a 

phase-exact calculation of the sound pressure field. The model can handle depth- and range-

dependent properties of water column and sea bottom. It also particularly takes any occurring 

pressure and sheer waves found at the sea bottom into account, as well as any arbitrary layers 

in water column and bottom, and additionally includes range-dependent bathymetry. 

 Sound propagation in water is influenced by a variety of environmental parameters, 

such as sound speed profiles in the water column, surface waves, bathymetry and the geo-

acoustical properties of the sea bottom. Therefore a real ocean, with its multitude of difficult-

to-measure, strongly variable and poorly reproducible environmental parameters, is too 

complex to allow for a detailed validation of a sound propagation model in sea experiments.  

For this reason, in parallel with the development of the numerical model, a scaled 

(1:100), simplified model of an ocean was tested in a tank experiment. This type of 

experiment places high demands on the precision of the measurements. To achieve this 

required precision, a frame incorporating high-precision linear actuators was constructed, and 

upon which the transmitter is firmly fixed, whereas the receiving hydrophone can be 

positioned in all three spatial dimensions within an accuracy of 0.2mm (Fig. 1). 

 

 
 

Fig.1. Left: Sketch of the tank experiment, Right: Highly precise positioning of transmitter and 

receiver. 
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In the base scenario, a horizontally mounted slab of homogeneous PVC serves as the 

sea bottom. Measurement data from the physical simulations in the water tank experiment are 

used to validate numerical simulations and the corresponding sound propagation model.  

The interaction of physical and numerical simulations permits the selective study of the 

effects of the individual parameters and thus facilitates reliable predictions, even in complex, 

realistic scenarios. The complexity of both the simulations (numerical and physical) can be 

gradually increased in a controlled manner for each single parameter. This ensures that the 

numerical model correctly describes the influence of each relevant parameter in the sound 

propagation.  

Figure 2 shows a comparison of measurement data from the tank experiment (physical 

simulation) with results from the numerical simulation for the base scenario at 185 kHz. 

 

Fig. 2. Comparison of measurement data from the tank experiment with results from the  

numerical simulation. 

 

The first simple variations of the base scenario may include the inclination of the PVC 

slab or the addition of a sediment layer. More complex bathymetries, surface waves and the 

suitable layering of the water column will all follow later. Eventually, the sound propagation 

model will have to prove itself under real conditions in sea trials. The extent of the required 

sea trials and the resulting costs can, however, be reduced considerably, through the 

interaction of numerical and physical simulations, as was described above. 

 

2. LONG RANGE PROPAGATION WITH STOCHASTIC RAY TRACING  

2.1 Ray tracing approach 

For moderate to high frequencies and long ranges, ray tracing formalism is a common 

and advantageous approach. The Helmholtz equation is solved by approximating the pressure 

p(r) as ray series  
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After inserting this expression into the Helmholtz equation and sorting the resulting 

terms according to powers of one obtains, in zeroth order, eikonal equation (2), which 

defines the rays, as well as in first order transport equation (3), which can be used in the 

calculation of pressure amplitude. 
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The eikonal equation can be transformed into a set of ordinary differential equations 

with the help of the two auxiliary parameters  und  
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This system of differential equations can be solved using standard methods such as the 

Euler method, as long as it has suitable starting values. One solution is presented in Equation 

(5), where the angle parametrizes the starting direction of the respective ray. 
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2.2 Stochastic ray tracing 

For the simulation of long ranges, for example those present in submarine hunting 

applications, the governing parameters, such as the sound speed profile in the water column 

are only partly known, and may change over the distance of interest. In order to mimic this 

uncertainty, the concept of stochastic ray tracing may be used. The approach described below 

is implemented in the sonar prediction model MOCASSIN used by the German Navy. The 

acronym MOCASSIN stands for “Monte Carlo Schall-Strahlen Intensitäten”, which can be 

translated as ‘Monte Carlo Sound Ray Intensities’. 

The model was developed (at the former Federal Armed Forces Research Institute for 

Underwater Acoustics and Marine Geophysics (FWG), now part of WTD 71), for active 

sonars in shallow waters with highly variable sound speed conditions and poor knowledge on 

the input data [1,2,3]. The variability is of a stochastic nature. This may happen to be 

sufficiently strong to influence the average sound pressure level and cause deviations from the 

values of the sound pressure level expected within a non-variable sound speed structure. This 

is especially true in shallow waters, where stochastic variations can be large compared to the 

relevant distances.  

The main feature that sets MOCASSIN apart from other propagation models is the 

stochastic raytracing approach. This method uses a Monte Carlo approach for the stochastic 

change of ray directions and was found to be a very effective way of accommodating the 

acoustic forward scattering caused by variations in the sound speed in the water column. In 

line with the incoherent transmission loss data from the experiments, with the model's 

stochastic approach and its operational conditions and needs, the model calculates incoherent 

TL alone, and requires the specification of only one sound speed profile. 

The propagation of underwater sound is computed in an optical or geometric acoustic 

approximation of the wave equation, which is better known as raytracing. This implies that 

acoustic wave length  is small when compared to any other structure length L of importance 

when it comes to propagation. The most dominating structure length is evidently water depth 

H, thus, it is essential that <<H. This creates no real restrictions for active sonars used in 

submarine hunting due to the fact that the lowest frequencies used are in the lower kHz 
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region, with wave lengths smaller than about 1 meter, allowing for water depths as shallow as 

30m. In a case of a depth dependent sound speed profile c(z), the condition to be met is 
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which means the sound speed variation should be small over the wavelength. 

The vertical sound speed profile c(z) is approximated by linear segments, so that 

horizontal layers of constant sound speed gradients are formed. This allows for extremely 

effective numerical raytracing equations in which the ray paths are either straight lines (dc /dz 

= 0) or the arcs of a circle (dc/dz 0). The calculation domain is divided into rectangles. The 

corners of the rectangles are defined in z by the points at which the linear sound speed 

segment start and end, and within range of the points at which linear segments of the 

bathymetry start and end. For large parts with constant bathymetry, a partition in range is 

chosen in a such a way that the aspect ratios of the calculation rectangles are not overly large. 

 

Fig.3. Schematic drawing of the calculation boxes from MOCASSIN defined by bathymetry and the 

linearized sound speed profile (right). The blue dotted line on the left shows the resulting ray. 

The input sound speed profile should be sufficiently sampled, so that the fine structure, 

which is important for the highest frequency considered, is included. However, a locally 

measured vertical fine structure is only effective if it is persistent over a sufficiently large 

horizontal distance. If this is not the case, propagation may be erroneously dominated by a 

local feature. If necessary, a linearization process will reduce the number of points to an 

appropriate value, in order to be able to continue further calculations.  

In some ocean areas, such as the Baltic Sea or Skagerrak, sound speed stratification is 

highly variable with range, over distances which are short in relation to propagation distances, 

which leads to horizontal sound speed gradients, for example, the thermocline may frequently 

change depth, while the main features of the vertical sound speed profiles remain conserved. 

In these, and similar cases, the horizontal sound speed variability may often be 

described stochastically, that is to say that the variation may be assumed to occur randomly. 

The acoustic effect is that additional losses (leakage) from sound channels will occur or – vice 

versa – acoustic energy may be trapped in the sound channels. To model this effect, a 

diffusion approximation is assumed in which the diffusion constant D has been made 

dependent on the sound speed profile c(z) 
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D0 is an empirical input quantity in the range of  10
-10
D0 10

-6
 and g0 is a scale factor 

with a numerical value one second. This assumes that the angular deviation  of the rays’ 

propagation angle from the deterministic conditions at the end of the layer is given by a 

Gaussian probability density for with 
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 SD2,0 22    , 

where S is the path length in that particular layer. The angular change is actually not applied 

at each layer boundary, but is accumulated over several the layers i, for a path length Ssum 

    zDSSS iiisum

2and   (8) 

and is applied in the range interval DXSTCSsum 2 DXSTC. This provides a certain randomizing 

of the locations where angular changes are applied. For meaningful statistical results, many 

events should occur over the total propagation range (DXSTC<<max.range) and, for the 

diffusion approximation to hold, the angular change should be small (i.e. 
2
 = 2 D S<< 1 ). On 

the other hand, for computational efficiency,DXSTC should be large. The empirical 

compromise for the value DXSTC in meters is  

  )20/.,200(min,1000max 3
w rangemaxdDX STC   , (9) 

where the dimensionless number dw  is the value of the water depth in meters. In depths 

greater than 1500m, the sound speed structure is assumed to be invariant and no stochastic 

angular changes of the propagation angle are applied, i.e. D (z 1500 m) = 0. 

Numerical values for the diffusion constant D0 were empirically determined by the 

modelling of various environments. The following quantities are recommended: 

 

 

 

 

 

2.3 Transmission loss computation 

In contrast to deep water raytracing models, which compute the intensity at one 

particular point in depth and range through ray divergence methods, this model accumulates 

the intensity of rays penetrating a receiver window of vertical size  at depth z, and range r. 

A maximum of 100 sample points in a range is allowed, as well as a maximum of 30 

consecutive vertical receiver windows, spanning the depth range from z0 to zmax = z0 +n, with 

1 n 30. 

Note that the loss is an incoherent average over depth interval  and insufficient values 

of  will result in rapidly fluctuating loss values due to insufficient ray statistics in the 

receiver window, as this is no eigenray solution. In order to give meaningful results, a large 

number of rays is required, usually somewhere in the order of several thousands. Thanks to 

the simple ray calculation process using stepwise linear sound speed profiles, the overall 

calculation is still very fast. 

The standard vertical source characteristic is modeled by a parabola. The energy 

radiated decreases with angle : 
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where t is the tilt angle against the horizontal and  is the opening angle between the two 3 

dB points. A single ray represents the intensity in the angular interval N/2 0  , which is 

sufficiently approximated by I() = E( )as long as the number of rays N in the above 
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interval is adequately large. Numerical realisation assumes a constant intensity for all rays and 

attributes larger angular intervals to a single ray in accordance with this energy distribution.  

The use of such an approximated beam profile is allowed for long range propagation 

with relatively realistic sonar beams in shallow water, where far-field intensity is dominated 

by rays with small inclinations. Rays with steeper angles are not take into account because 

they rapidly lose energy through their numerous reflections onto the seafloor and the surface. 

This type of ray-tracing approach in which the intensity between two adjacent rays is 

not interpolated in space, is mathematically exact only within the parameters of an infinite 

number of rays. However, for most practical applications, a few thousand rays will constitute 

a sufficient approximation. Deviations in the computed loss occur if different numbers of rays 

or different sequences of random numbers are used. These deviations are generally 

insignificant at high intensity regions and will be predominantly noticeable at large intensity 

gradients or in low intensity (high loss) areas into which the intensity has been carried 

through by only a few rays. Smoothing the propagation loss curves with splines will reduce 

these differences. 

2.4 Comparison with measurements 

Over the years, several comparisons between measured and modeled transmission loss 

data have been made [4,5,6]. To give one example, the recordings of transmission loss made 

in 2006 and 2007 in the Baltic Sea are compared with simulations with stochastic ray tracing 

[7]. The measurements were conducted with a receiving vertical array on a moored ship (FS 

Planet) and a transmitter that was towed by a second ship (S/V Ocean Surveyor) along a track 

55 km away from the receiver. Figure 5 shows the measured and modeled transmission loss 

values for two different runs (A05 from 2006, left and A28 from 2007) and the two different 

hydrophone depths. In all cases, the stochastic calculations are in far better accordance with 

the measured values than with the deterministic calculations.  

For both trials, the observed oceanographic conditions were typical for the Baltic Sea’s 

summer conditions, but were not identical. The recorded temperature, salinity and resulting 

sound speed profiles are shown in Figure 4.During the 2006 trial, there was a very sharp 

thermocline and the sound speed minimum was about 1427m/s at a depth of between 30m and 

35 m. During the 2007 trial, the sound speed minimum was only about 1435m/s, roughly 10m 

deeper, and the thermocline change was more gradual. 

 

 

Fig.4. Temperature and salinity measurements and resulting sound speed profiles for the A05 run of 

the 2006 trial (left) and the A28 run of the 2007 trial. 

Run A05 

2006 

Run A28 

2007 
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Simulations with MOCASSINwere performed for several runs in 2006 and 2007 using 

four different frequencies. The modeled TL curves for Run A05 (2006) show decent 

accordance with the measurements for 3400 Hz (Fig. 5, upper picture) for the stochastic 

calculations. It is emphasized here that a deterministic model would not be able to properly 

predict the TL outside the sound channel with only one sound-speed profile given as the 

input. For a hydrophone depth of 35m, the receiver was within the sound channel and the 

transmission was somewhat low. At a hydrophone depth of 14m, the hydrophone was outside 

the sound channel and, therefore the transmission loss was significantly greater. 

 

 

Fig.5. Measured (black) and modeled transmission loss for different hydrophone depths for the A05 

run of the 2006 trial (a) and the A28 run of the 2007 trial (b). The modeled transmission loss curves 

vary in the diffusion constant D0, from D0=10
-9

zero (quasi deterministic, red) to D0=510
-8

 (cyan) and 

D0=10
-7

 (blue). 

For run A28 from 2007, the same level of accordance could not be reached, although 

the measurements were conducted at the same site. Nevertheless, the results with the diffusion 

constant D0 of 10
-7

, the general recommendation for the Baltic Sea, a high variability region, 

gives the best results. It might be necessary to use a frequency and position-dependent 

diffusion function rather than a constant.  

 

3. NUMERICAL METHODS TO DETERMINE SCATTERED PRESSURE OF 

UNDERWATER OBJECTS 

The most applied methods for the prediction of the scattered pressure of underwater 

objects in the far-field may be grouped into four different basic methods: the Boundary 

Element Method (BEM), the Finite Element Method (FEM), approximate methods and 

raytracing methods.  

 

(a) 

(b) 

Volume 18 HYDROACOUSTICS

134



3.1 Boundary Element Method (BEM) 

This method only requires the three-dimensional modeled surface of the objects of 

interest, which is represented by a discretization into triangular and/or quadrilateral elements. 

In general, this leads to a complex system of equations that can be solved by different kinds of 

solvers: 

o Direct solver (matrix based): usable for bi- and monostatic calculations (element limit 

approx. 200k) 

o Iterative solver (matrix based): Usable for bistatic calculations (element limit approx. 

300k) 

o Iterative solver combined with the fast multipole method (MLFMM): Usable for 

bistatic rigid calculations (element limit approx. 5M) 

 

3.2 Finite Element Method (FEM) 

This method requires a three-dimensional model of full volume using so-called finite 

elements, which may have four or more different nodes. This method is often not feasible for 

large objects or calculations in the far-field because the number of volume elements required, 

which results in large, sparse matrices, cannot be handled by standard workstations. 

One practical alternative is the use of two-dimensional FEM calculations with simple 

rotational symmetric objects for rigid and coupled cases. 

 

3.3 Approximate (PWA, KIA) and raytracing based methods (BEAM) 

These methods do not require large equation systems, but are able to calculate usable, 

approximate solutions within reasonable times, mostly within the mid and high frequency 

range. Depending on the method used, they are usable for rigid (PWA, KIA) and coupled 

calculations with inner structures (BEAM). 

 

3.4 Acoustic backscattering 

The acoustic sound backscattering pscat of the surface Γ of the object can be calculated 

by means of the Kirchhoff-Helmholtz integral (Eq. 11), at a known pressure and velocity field 

(resulting from one of the methods mentioned above): 
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with 

g fundamental solution of the Helmholtz equation 

pinc incident pressure 

TS target strength (normalized pressure level at a distance of 1m from the center) 

Using a full coupled boundary element calculation, the unknown pressure and velocity 

values maybe determined on the surface of the object and, at that juncture, in a post-

processing step, and additionally from the backscattered sound pressure at any point in the 

far-field. 
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3.5 Results for different kinds of objects and methods 

3.5.1 Icosahedron (bistatic) 

Using an icosahedron (113,940 elements, diameter ≈ 0.33 m, 20 triple mirrors, Fig. 6, 

details see [8]), the results are compared with a BEM solution. The target strength is 

calculated at a frequency of f = 100 kHz on an observation surface (spherical segment, placed 

centered over one of the mirrors, 8,457 elements, 4,360 nodes, Fig. 7). 

  

Fig.6. Icosahedron Fig.7. Observation surface 

(spherical part) 

The “reference” solution (Fig. 8) was computed using a direct and iterative solver with a 

conventional BE method. The comparison with the result of the BEAM method (Fig. 9) only 

gives some minor differences in quieter areas (less than -15 dB, white dotted circles). 

  

Direct solver, matrix-based (Intel MKL) 

Δtsolve: 11,116   s (3:05:13 h) 

smatrix: 198,095   MB 

        

Iterative solver, matrix-based (GMRES) 

Niter: 76   eiter = 8.8×10
-7

 

Δtsolve: 709   s 
 

BEAM method 

Δtsolve: 0 .5 s 

Sbeam: < 10   MB 
 

Fig.8. bistatic, BEM, matrix-based, 

TS, rigid,f = 100 kHz, 

Observation surface (spherical segment) 

Fig.9. bistatic, BEAM (raytracing), 

TS, rigid,f = 100 kHz, 

Observation surface (spherical segment) 
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3.5.2 Icosahedron (monostatic) 

Here, a monostatic calculation was performed for all 4,360 nodes of the observation 

mesh (Fig. 11).Due to the fact that a direct solver is capable of using multiple right-hand 

sides, which results from changing the position of the sound source without refactorizing the 

underlying system matrix, a reference solution is also available(Fig. 10). 

  

Direct solver, matrix-based (Intel MKL) 

Δtsolve: 31,667   s (8:47:40 h) 

smatrix: 198,095   MB 
 

BEAM method 

Δtsolve: 65 .8 s 

Sbeam: < 10   MB 
 

Fig.10. monostatic, BEM, matrix-based, 

TS, rigid,f = 100 kHz, 

Observation surface (spherical segment) 

Fig.11. monostatic, BEAM, 

TS, rigid,f = 100 kHz, 

Observation surface (spherical segment) 

 

3.5.3 Model 2 of BeTSSi workshop (monostatic) 

To compare the results of different methods for shell-like structures, a rounded air-filled 

cylinder (for details, see [9]) was used; this had 4 triple mirrors at the left end and one triple 

mirror at the right end (approx. size 46 × 6 × 6m).The cylinder and the plates at the left end 

are modeled as a 20mm steel shell. 

 

 

Fig.12. Model 2 Fig.13. Dimensions and sizes of 

model 2 

Fig. 14 shows the result (target strength) for this model at a frequency of f = 3kHz. Both 

solutions show satisfying accordance, but the solution time for the approximate raytracing 

solver is more than 300 times lower. 
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Monostatic calculation, rigid 

f :  3 kHz 

Nelem:  217,065 

NFP:  720 

ΔαSTEP:  0.5° 

Calculation times: 

tIMKL:  39,840 s (11:04:00) 

tBEAM:  146 s 
 

Fig.14. Target strength of Model 2, f = 3 kHz.  

 

3.5.4 Advanced capabilities 

To illustrate the advanced capabilities of the raytracing-based BEAM method, a 

rounded cylinder is used with several triple mirrors on the caps. The cylinder is surrounded by 

a conical shell (Figure 15, approx. size 49 × 10 × 10m, details see [10]). The inner cylinder, 

filled with air, and the triple mirrors at the left end, are represented by steel with a thickness 

of 2cm. The outer conical hull is made of steel with a thickness of 8mm, filled with, and 

surrounded by, water. 

 

Fig.15. Complex model of a round cylinder with one resp. four triple mirrors at the ends, 

surrounded by a conical rounded shell. 

A grid in the form of a spherical segment (longitude λL of -180 ... +180°, latitude φB of  

-20 ... +20°, using angular steps of 0.5°) is placed in the far-field at a distance of 10km around 

the object. Its nodes are used as evaluation points (total of 58,401 points) for a monostatic 

calculation. That means that the position of the sound source was moved to each evaluation 

point. For a better representation of the results, a projection distance of 30m is used (Fig. 16).  
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Fig.16. Spherical evaluation surface (58,401 nodes), using a projection distance of 30m. 

The size and complexity of this model makes a monostatic calculation with BE or FE 

methods over a realistic time almost impossible, and is only feasible with the use of the 

BEAM method. 

The target strength was calculated for a total of 21 frequencies (f = 8 ... 12 kHz, 

step width Δf = 0.1 kHz) for all of the 58,401 evaluation points, and in addition, an 

appropriate averaging process was carried out over all the frequencies used (Fig. 17). 

 

Fig.17. Averaged target strength TS for faver = 10 kHz. 

One can clearly see the effects of the triple mirrors in the front and rear. The 

computation time for all 58,401 evaluation points s well as all 21 frequencies was about 

6,976s on a 20 core workstation, which corresponds to a mean solving time of 0.119s 

per point. 
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