PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and performance parameters of shear walls: a review

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reinforced concrete (RC) walls are used in buildings to provide lateral stiffness and strength against lateral forces like earthquake, wind etc. Shear walls are one of the most important lateral load-resisting systems in high-rise buildings. This paper provides an overview of not only reinforced concrete (RC), but also composite shear walls. The paper focuses on four inter-related review areas, namely i) conventional shear walls with rectangular cross section, ii) coupled shear walls, iii) composite shear walls, and iv) shear walls with opening(s). Behavior of shear walls which are the most damaged structural elements during earthquake and the parameters affecting this behavior are evaluated in this paper. However, this paper presents the available information about the design and performance parameters of shear walls.
Rocznik
Strony
69--93
Opis fizyczny
Bibliogr. 81 poz.
Twórcy
  • Prof.; Engineering Faculty, Civil Engineering Department, Atatürk University, Erzurum, Turkey
  • PhD; Engineering Faculty, Civil Engineering Department, Atatürk University, Erzurum, Turkey
Bibliografia
  • [1] Barda, F., Hanson, J.M., & Corley, W. (1977). Shear strength of low-rise walls with boundary elements. Special Publication, 53, 149-202.
  • [2] Cardenas, A., Russell, H., & Corley, W. (1980). Strength of low-rise structural walls. Special Publication, 63, 221-242.
  • [3] Cardenas, A.E., & Magura, D.D. (1972). Strength of high-rise shear walls-rectangular cross section. Special Publication, 36, 119-150.
  • [4] Oesterle, R., Aristizabal-Ochoa, J., Shiu, K. & Corley, W. (1984). Web crushing of reinforced concrete structural walls. Journal Proceedings, 81(3), 231-241.
  • [5] Oesterle, R., Fiorato, A., Aristizabal-Ochoa, J., & Corley, W (1980). Hysteretic response of reinforced concrete structural walls. 63, 243-274.
  • [6] Leafs, I.D., & Kotsovos, M.D. (1990). Behavior of reinforced concrete structural walls: strength, deformation characteristics, and failure mechanism. Structural Journal, 87(1), 23-31.
  • [7] Lefas, I.D., & Kotsovos, M.D. (1990). Strength and deformation characteristics of reinforced concrete walls under load reversals. Structural Journal, 87(6), 716-726.
  • [8] Salonikios, T. N., Kappos, A. J., Tegos, I. A., & Penelis, G. G. (1999). Cyclic load behavior of low-slenderness reinforced concrete walls: Design basis and test results. Structural Journal, 96(4), 649-660.
  • [9] Taylor, C. P., Cote, P. A., & Wallace, J. W. (1998). Design of slender reinforced concrete walls with openings. Structural journal, 95(4), 420-433.
  • [10] Mistri, A., Davis, R., & Sarkar, P. (2016). Condition assessment of fire affected reinforced concrete shear wall building - A case study. Advances in concrete construction, 4(2), 89.
  • [11] Paulay, T., & Priestley, M. N. (1992). Seismic design of reinforced concrete and masonry buildings.
  • [12] Ozturk, B. M. (2003). Seismic drift response of building structures in seismically active and near-fault regions. Doctoral dissertation, Purdue University.
  • [13] Dazio, A., Beyer, K., & Bachmann, H. (2009). Quasi-static cyclic tests and plastic hinge analysis of RC structural walls. Engineering Structures, 31(7), 1556-1571.
  • [14] Aydin, A. C., & Bayrak, B. (2019). The torsional behavior of reinforced self-compacting concrete beams. Advances in Concrete Construction, 8(3), 187-198.
  • [15] Maali, M., Kılıç, M., Yaman, Z., Ağcakoca, E., & Aydın, A. C. (2019). Buckling and post-buckling behavior of various dented cylindrical shells using CFRP strips subjected to uniform external pressure: Comparison of theoretical and experimental data. Thin-Walled Structures, 137, 29-39.
  • [16] Baltacıoğlu, A. K., Baki, Ö., Civalek, Ö., & Akgöz, B. (2010). Is artificial neural network suitable for damage level determination of RC-Structures. International Journal of Engineering and Applied Sciences, 2(3), 71-81.
  • [17] Baltacıoğlu, A. K., Yavaş, A., Civalek, Ö., Öztürk, B., & Akgöz, B. (2010). Using of Fuzzy Logic Based Expert Systems for Fast Damage Determination of Structures After Earthquake. Journal of Balıkesir University Institute of Science, 12(1), 65-74.
  • [18] Farvashany, F. E., Foster, S. J., & Rangan, B. V. (2008). Strength and deformation of high-strength concrete shearwalls. ACI structural journal, 105(1), 21.
  • [19] Derecho, A. T., Iqbal, M., Fintel, M., & Corley, W. G. (1980). Loading history for use in quasi-static simulated earthquake loading tests. Special Publication, 63, 329-356.
  • [20] Calvi, G. M., Kingsley, G. R., & Magenes, G. (1996). Testing of masonry structures for seismic assessment. Earthquake spectra, 12(1), 145-162.
  • [21] Ozturk, B. (2008). Investigation of seismic behavior of reinforced concrete shearwall building frames subjected to ground motions from the 1999 turkish earthquakes. In 14 th World Conference on Earthquake Engineering.
  • [22] Carrillo, J., & Alcocer, S. M. (2013). Experimental investigation on dynamic and quasi static behavior of low rise reinforced concrete walls. Earthquake Engineering & Structural Dynamics, 42(5), 635-652.
  • [23] Bertero, V. V., Popov, E. P., Wang, T. Y., & Vallenas, J. (1977, January). Seismic design implications of hysteretic behavior of reinforced concrete structural walls. 6 th World Conference on Earthquake Engineering, 1898-1904.
  • [24] Aktan, A. E., & Bertero, V. V. (1984). Seismic response of R/C frame-wall structures. Journal of Structural Engineering, 110(8), 1803-1821.
  • [25] Paulay, T., & Santhakumar, A. R. (1976). Ductile behavior of coupled shear walls. Journal of the Structural Division, 102(1), 93-108.
  • [26] Tiecheng, W., Tianyu, L., & Hailong, Z. (2017). Tensile-shear mechanical performance test of reinforced concrete shear wall. Building Structure, 47(2), 64-69.
  • [27] Ji, X., Cheng, X., & Xu, M. (2018). Coupled axial tension-shear behavior of reinforced concrete walls. Engineering Structures, 167, 132-142.
  • [28] Bakis, C. E., Bank, L. C., Brown, V., Cosenza, E., Davalos, J. F., Lesko, J. J., ... & Triantafillou, T. C. (2002). Fiber-reinforced polymer composites for construction - State-of-the-art review. Journal of composites for construction, 6(2), 73-87.
  • [29] Vecchio, F. J., de la Pena, O. A. H., Bucci, F., & Palermo, D. (2002). Behavior of repaired cyclically loaded shearwalls. ACI Structural Journal, 99(3), 327-334.
  • [30] Mosallam, A. S., Bayraktar, A., Elmikawi, M., Pul, S., & Adanur, S. (2015). Polymer composites in construction: an overview, SOJ Materials Science & Engineering.
  • [31] Christidis, K. I., & Trezos, K. G. (2017). Experimental investigation of existing non-conforming RC shear walls. Engineering Structures, 140, 26-38.
  • [32] Antoniades, K. K., Salonikios, T. N., & Kappos, A. J. (2005). Tests on seismically damaged reinforced concrete walls repaired and strengthened using fiber-reinforced polymers. Journal of Composites for Construction, 9(3), 236-246.
  • [33] Aydin, A. C., Yaman, Z., Ağcakoca, E., Kiliç, M., Maali, M., & Dizaji, A. A. (2020). CFRP effect on the buckling behavior of dented cylindrical shells. International Journal of Steel Structures, 20(2), 425-435.
  • [34] El-Sokkary, H., Galal, K., Ghorbanirenani, I., Léger, P., & Tremblay, R. (2013). Shake table tests on FRP-rehabilitated RC shear walls. Journal of Composites for Construction, 17(1), 79-90.
  • [35] Layssi, H., Cook, W. D., & Mitchell, D. (2012). Seismic response and CFRP retrofit of poorly detailed shear walls. Journal of Composites for Construction, 16(3), 332-339.
  • [36] Paterson, J., & Mitchell, D. (2003). Seismic retrofit of shear walls with headed bars and carbon fiber wrap. Journal of Structural Engineering, 129(5), 606-614.
  • [37] Qazi, S., Michel, L., & Ferrier, E. (2019). Seismic behaviour of RC short shear wall strengthened with externally bonded CFRP strips. Composite Structures, 211, 390-400.
  • [38] Carrillo, J., Lizarazo, J. M., & Bonett, R. (2015). Effect of lightweight and low-strength concrete on seismic performance of thin lightly-reinforced shear walls. Engineering Structures, 93, 61-69.
  • [39] Su, R.K.L., & Wong, S. M. (2007). Seismic behaviour of slender reinforced concrete shear walls under high axial load ratio. Engineering Structures, 29(8), 1957-1965.
  • [40] Dong, Y. R., Xu, Z. D., Zeng, K., Cheng, Y., & Xu, C. (2018). Seismic behavior and cross-scale refinement model of damage evolution for RC shear walls. Engineering Structures, 167, 13-25.
  • [41] Zhang, Y., & Wang, Z. (2000). Seismic behavior of reinforced concrete shear walls subjected to high axial loading. Structural Journal, 97(5), 739-750.
  • [42] Iliya, R., & Bertero, V. V. (1980). Effects of amount and arrangement of wall-panel reinforcement on hysteretic behavior of reinforced concrete walls. University of California, Earthquake Engineering Research Center.
  • [43] Salonikios, T. N. (2002). Shear strength and deformation patterns of R/C walls with aspect ratio 1.0 and 1.5 designed to Eurocode 8 (EC8). Engineering Structures, 24(1), 39-49.
  • [44] Tolou Kian, M. J., & Cruz-Noguez, C. (2018). Reinforced concrete shear walls detailed with innovative materials: seismic performance. Journal of Composites for Construction, 22(6), 04018052.
  • [45] Mohamed, N., Farghaly, A. S., Benmokrane, B., & Neale, K. W. (2014). Experimental investigation of concrete shear walls reinforced with glass fiber-reinforced bars under lateral cyclic loading. Journal of Composites for Construction, 18(3), A4014001.
  • [46] Mattock, A. H. (1967). Discussion of “Rotational capacity of reinforced concrete beams”. Journal of the Structural Division, 93(2), 519-522.
  • [47] Priestley, M. N., Seible, F., & Calvi, G. M. (1996). Seismic design and retrofit of bridges. John Wiley & Sons.
  • [48] Bohl, A., & Adebar, P. (2011). Plastic hinge lengths in high-rise concrete shear walls. ACI Structural Journal, 108(2), 148.
  • [49] Park, W. S., & Yun, H. D. (2006). Seismic behaviour and design of steel coupling beams in a hybrid coupled shear wall systems. Nuclear Engineering and Design, 236(23), 2474-2484.
  • [50] Park, W. S., & Yun, H. D. (2005). Seismic behaviour of steel coupling beams linking reinforced concrete shear walls. Engineering structures, 27(7), 1024-1039.
  • [51] Zhao, J., Cai, G., Larbi, A. S., Zhang, Y., Dun, H., Degée, H., & Vandoren, B. (2018). Hysteretic behaviour of steel fibre RC coupled shear walls under cyclic loads: Experimental study and modelling. Engineering Structures, 156, 92-104.
  • [52] Aksogan, O., Arslan, H. M., & Choo, B. S. (2003). Forced vibration analysis of stiffened coupled shear walls using continuous connection method. Engineering structures, 25(4), 499-506.
  • [53] Chaallal, O., & Ghlamallah, N. (1996). Seismic response of flexibly supported coupled shear walls. Journal of Structural Engineering, 122(10), 1187-1197.
  • [54] Chaailal, O., Thibodeau, S., Lescelleur, J., & Maleenfant, P. (1996). Steel Fiber or conventional reinforcement for concrete shearwalls. Concrete International, 18(6), 39-42.
  • [55] Cheng, M. Y., Fikri, R., & Chen, C. C. (2015). Experimental study of reinforced concrete and hybrid coupled shear wall systems. Engineering Structures, 82, 214-225.
  • [56] Zhao, J., Cai, G., Larbi, A. S., Zhang, Y., Dun, H., Degée, H., & Vandoren, B. (2018). Hysteretic behaviour of steel fibre RC coupled shear walls under cyclic loads: Experimental study and modelling. Engineering Structures, 156, 92-104.
  • [57] Galano, L., & Vignoli, A. (2000). Seismic behavior of short coupling beams with different reinforcement layouts. Structural Journal, 97(6), 876-885.
  • [58] Zhang, J., Zheng, W., Yu, C., & Cao, W. (2018). Shaking table test of reinforced concrete coupled shear walls with single layer of web reinforcement and inclined steel bars. Advances in Structural Engineering, 21(15), 2282-2298.
  • [59] Wang, T., Shang, Q., Wang, X., Li, J., & Kong, Z. A. (2018). Experimental validation of RC shear wall structures with hybrid coupling beams. Soil Dynamics and Earthquake Engineering, 111, 14-30.
  • [60] Ji, X., Wang, Y., Ma, Q., & Okazaki, T. (2017). Cyclic behavior of replaceable steel coupling beams. Journal of Structural Engineering, 143(2), 04016169.
  • [61] Adams, P. F., Zimmerman, T. J. E., & MacGregor, J. G. (1987). Design and Behavior of Composite Ice-Resisting Walls. Port and Ocean Engineering Under Arctic Conditions., 1, 663-674.
  • [62] Matsuishi, M., & Iwata, S. (1987). Strength of Composite System Ice-Resisting Structures Steel/Concrete Composite Structural Systems, C-FER Publication No. 1. In Proceedings of a special symposium held in conjunction with POAC (Vol. 87).
  • [63] Oiino, F. (1987). Experimental Studies on Composite Members for Arctic Offshore Structures. POAC’87, 89-102.
  • [64] Li, X., & Li, X. (2017). Steel plates and concrete filled composite shear walls related nuclear structural engineering: Experimental study for out-of-plane cyclic loading. Nuclear Engineering and Design, 315, 144-154.
  • [65] Lu, X. L., Gan, C., & Wang, W. (2009). Study on seismic behavior of steel plate reinforced concrete shear walls. Journal of Building Structures, 30(5), 89-96.
  • [66] Chunyu, C.T.X.C.T., & Peifu, X. (2011). Experimental study of the compression-bending behavior of composite shear walls of high axial compression ratios
  • [J]. China Civil Engineering Journal, 6.
  • [67] Nie, J. G., Hu, H. S., Fan, J. S., Tao, M. X., Li, S. Y., & Liu, F. J. (2013). Experimental study on seismic behavior of high-strength concrete filled double- steel-plate composite walls. Journal of Constructional Steel Research, 88, 206-219.
  • [68] Dan, D., Fabian, A., & Stoian, V. (2011). Theoretical and experimental study on composite steel-concrete shear walls with vertical steel encased profiles. Journal of constructional steel research, 67(5), 800-813.
  • [69] Meghdadaian, M., & Ghalehnovi, M. (2019). Improving seismic performance of composite steel plate shear walls containing openings. Journal of Building Engineering, 21, 336-342.
  • [70] Park, W. S., & Yun, H. D. (2006). Seismic behaviour and design of steel coupling beams in a hybrid coupled shear wall systems. Nuclear Engineering and Design, 236(23), 2474-2484.
  • [71] Lan, W., Ma, J., & Li, B. (2015). Seismic performance of steel-concrete composite structural walls with internal bracings. Journal of Constructional Steel Research, 110, 76-89.
  • [72] Mao, C., Dong, J., Li, H., & Ou, J. (2012, April). Seismic performance of RC shear wall structure with novel shape memory alloy dampers in coupling beams. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2012 (Vol. 8345, p. 83454G). International Society for Optics and Photonics.
  • [73] Ji, X., Leong, T., Qian, J., Qi, W., & Yang, W. (2016). Cyclic shear behavior of composite walls with encased steel braces. Engineering Structures, 127, 117-128.
  • [74] Astaneh-Asl, A. (2002). Seismic behavior and design of composite steel plate shear walls. Moraga, CA: Structural Steel Educational Council.
  • [75] Yeh, R. L., Tseng, C. C., & Hwang, S. J. (2018). Shear Strength of Reinforced Concrete Vertical Wall Segments under Seismic Loading. ACI Structural Journal.
  • [76] Wang, J., Sakashita, M., Kono, S., & Tanaka, H. (2012). Shear behaviour of reinforced concrete structural walls with eccentric openings under cyclic loading: experimental study. The Structural Design of Tall and Special Buildings, 21(9), 669-681.
  • [77] Massone, L. M., Muñoz, G., & Rojas, F. (2019). Experimental and numerical cyclic response of RC walls with openings. Engineering Structures, 178, 318-330.
  • [78] Qian, K., Li, B., & Liu, Y. (2017). Experimental and analytical study on load paths of RC squat walls with openings. Magazine of Concrete Research, 69(1), 1-23.
  • [79] Mohammadi Vojdan, B., & Aghayari, R. (2017). Investigating the seismic behavior of RC shear walls with openings strengthened with FRP sheets using different schemes. Scientia Iranica, 24(4), 1855-1865.
  • [80] Deng, K., Pan, P., Shen, S., Wang, H., & Feng, P. (2018). Experimental study of FRP-reinforced slotted RC shear walls under cyclic loading. Journal of Composites for Construction, 22(4), 04018017.
  • [81] Carrillo, J., & Alcocer, S. M. (2012). Seismic performance of concrete walls for housing subjected to shaking table excitations. Engineering structures, 41, 98-107.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01432c10-4ed4-40e3-80ab-6cf3e4d7a633
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.