Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of the CFD (Computational Fluid Dynamics) research on a vertical axis wind turbine with a variable swept area. The tested turbine has four sets of blades, each of which consists of two moving parts. By changing the angle between these parts, it is possible to change the swept area of the turbine wheel to adjust the characteristics of the turbine to the current wind speed. In the case of strong wind, it is possible to fold blades to protect the rotor against damage. The 3D-CFD model was tested using the ANSYS Fluent software. The four rotors differing in the blade angle were analyzed. The tests were carried out for different wind speeds. The results are presented as pressure and velocity distributions as well as streamlines around the rotor. In addition, the waveforms of the torque acting on a single blade and on the entire rotor are shown. The average rotor torque was also calculated. These findings enabled us to create the characteristics of the power factor for different rotational speeds of the rotor. The results show that the adjustment of the swept area makes the z-turbine have a flexible operating range.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
333--348
Opis fizyczny
BIbliogr. 21poz., fig., tab.
Twórcy
autor
- Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin University of Technology
autor
- Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin University of Technology
autor
- Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin University of Technology
Bibliografia
- 1. Manwell J.F., McGowan J.G., Rogers A.L. Wind Energy Explained - Theory, Design and Application; John Wiley & Sons; 2010.
- 2. Gipe P. Wind Energy Basics: A Guide to Small and Micro Wind Systems; Chelsea Green Publishing; 2010.
- 3. Kumar R., Raahemifar K., Fung A.S. A critical review of vertical axis wind turbines for urban applications; Renewable and Sustainable Energy Reviews; 2018; 89; 281-291. https://doi.org/10.1016/j.rser.2018.03.033
- 4. Pożarska K., Grabowski J. Occurrence of Wind Speed in Selected Places, in North-Eastern Poland in the Aspect of Energy Use; Nauka PrzyrodaTechnologie, 2013; 7:4.
- 5. Global wind atlas https://globalwindatlas.info/en/area/Poland
- 6. Eriksson S., Bernhoff H., Leijon M. Evaluation of different turbine concepts for wind power; Renewable and Sustainable Energy Reviews, 2008; 12(5); 1419-1434. https://doi.org/10.1016/j.rser.2006.05.017
- 7. Luvside, 5 Disadvantages of Vertical Axis Wind Turbine (VAWT), https://www.luvside.de/en/vawt-disadvantages/
- 8. Pietrykowski K., Kasianantham N., Ravi D., Gęca M.J., Ramakrishnan P., Wendeker M. Sustainable energy development technique of vertical axis wind turbine with variable swept area – An experimental investigation, Applied Energy; 2023, 329 (120262). https://doi.org/10.1016/j.apenergy.2022.120262
- 9. Brusca S., Lanzafame R., Messina M. Design of a vertical-axis wind turbine: how the aspect ratio
- affects the turbine’s performance; International Journal of Energy and Environmental Engineering; 2014; 5; 333–340. https://doi.org/10.1007/s40095-014-0129-x
- 10. Posa A. Influence of Tip Speed Ratio on wake features of a Vertical Axis Wind Turbine; Journal of Wind Engineering and Industrial Aerodynamics; 2020; 197; 104076. https://doi.org/10.1016/j.jweia.2019.104076
- 11. Castillo O.C., Andrade V.R., Rivas J.J.R., González R.O. Comparison of power coefficients in wind turbines considering the tip speed ratio and blade pitch angle. Energies; 2023, 16(6), 2774. https://doi.org/10.3390/en16062774
- 12. Saad M.M.M., Asmuin N. Comparison of horizontal axis wind turbines and vertical axis wind turbines. IOSR Journal of Engineering; 2014; 04 (08); 27-30. https://doi.org/10.9790/3021-04822730
- 13. Samsonov V., Baklushin P. Comparison of different ways for VAWT aerodynamic control. Journal of Wind Engineering and Industrial Aerodynamics; 1992; 39 (1–3); 427-433, https://doi.org/10.1016/0167-6105(92)90566-S
- 14. Abdalrahman G., Melek W., Lien F-S. Pitch angle control for a small-scale Darrieus vertical axis wind, urbine with straight blades (H-Type VAWT). Renewable Energy; 2017; 114 (B), 1353-1362. https://doi.org/10.1016/j.renene.2017.07.068
- 15. Hwang I.S., Min S.Y., Jeong I.O., Lee Y.H., Kim S.J. Efficiency improvement of a new vertical axis wind turbine by individual active control of blade motion. Smart Structures and Integrated Systems; 2006; 6173. https://doi.org/10.1117/12.658935
- 16. Czyż Z., Kamiński Z. The characteristics of the operating parameters of the vertical axis wind turbine for the selected wind speed. Adv. Sci. Technol. Res. J.; 2017; 11(1); 58–65, https://doi.org/10.12913/22998624/68469
- 17. Gryniewicz-Jaworska M. Application of heuristic optimization for the selection of parameters of the generation system and reactive power consumption of wind farms; Adv. Sci. Technol. Res. J.; 2020; 14(3):9–14. https://doi.org/10.12913/22998624/120929
- 18. Czyż Z., Karpiński P., Klepka T., Szkoda Z. Design and simulation of small-scale horizontalaxis wind turbine with diffuser effect. MATEC Web Conf.; 2019; 252. https://doi.org/10.1051/matecconf/201925204005
- 19. Patent no. Pat. 219985 - Rotor with an adjustable position range of blades, in particular for a wind turbine
- 20. Patent application no. P.441386 - Wind turbine blade angle adjustment mechanism with a variable working surface.
- 21. Czyż Z., Kamiński Z., Wendeker M. Wind turbine operation parameter characteristics at a given wind speed. Adv. Sci. Technol. Res. J. 2014; 8(22):75-82. https://doi.org/10.12913/22998624.1105178.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0140d726-6615-4146-ad1a-daa5993971f1