Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Mikrostruktura, skład pierwiastkowy i fazy oraz ich wpływ na hydrofilowe właściwości szybko zestalonych stopów Al-In
Języki publikacji
Abstrakty
The microstructure, elemental and phase composition of rapidly solidified foils of Al-In alloys were investigated using SEM with EDX, XRD and RBS. It was found that thin surface layers of foils are enriched with indium that results in hydrophilization of alloys. Wetting transition from the homogeneous Wenzel state to the heterogeneous Cassie-Baxter state observed when indium content increases at the foil surface of hydrophilic Al- In alloys is discussed in terms of the penetration of water into the micro/nanostructures of foil surfaces.
Na podstawie pomiarów SEM z EDX, XRD i RBS przeprowadzono badania składu pierwiastkowego, fazy i mikrostruktury szybko zestalonych powłok stopów Al-In. Stwierdzono, że cienkie warstwy powierzchniowe powłok wzbogacają się w ind, co powoduje hydrofilizację stopów. Przejście zawilgocenia z jednolitego stanu Wenzel do heterogenicznego stanu Cassie-Baxter, obserwowanego gdy następuje wzrost zawartości indu na powierzchni powłoki hydrofilowych stopów Al-In, zostało przeanalizowane pod kątem wnikania wody do powierzchniowych mikro i nano struktur powłoki.
Wydawca
Czasopismo
Rocznik
Tom
Strony
122--125
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Belarusian State University of Informatics and Radioelectronics, 6, P. Brovki Str., 220013 Minsk, Belarus
autor
- Belarusian State Pedagogical University, 18, Sovetskaya Str., 220050 Minsk, Belarus
autor
- Belarusian State University, 4, Independence Av., 220050 Minsk, Belarus
autor
- Belarusian State University, 4, Independence Av., 220050 Minsk, Belarus
autor
- Institute of Transport, Combustion Engines and Ecology, Lublin University of Technology, 36, Nadbystrzycka Str., 20-618 Lublin, Poland
autor
- Lublin University of Technology, 38A, Nadbystrzycka Str., 20-618 Lublin, Poland
Bibliografia
- [1] Mohamed A.M.A., Abdullah A.M., Younan N.A. Corrosion behavior of superhydrophobic surfaces: a review, Arabian J. of Chemistry, 8 (2014), 749-765.
- [2] Herlach D.M., Galenko P., Holland-Moritz D. Metastable Solids from Undercooled Melts, Elsevier, Amsterdam, 2007, 432 p.
- [3] Tashlykova-Bushkevich I.I., Yakavenka J.S., Shepelevich V.G., Tashlykov I.S. Composition and morphology influence on wettability behavior of rapidly solidified foils of Al-In alloys, J. Physics and Chemistry of Material Treatment, 3 (2016), 65-72 (in Russian).
- [4] Tashlykova – Bushkevich I.I., Yakavenka J. S. Effect of Cr on hydrophobicity of rapidly solidified Al. Proc. Int. Conf. Physics, chemistry and applications of nanostructures, Nanomeeting- 2017, edited by V.E. Borisenko, S.V. Gaponenko, V.S. Gurin, C.H. Kam (World Scientific Publishing Co. Pte. Ltd., Minsk, Belarus), (2017) 449-452.
- [5] Tashlykova-Bushkevich I.I., Yakavenka J.S., Bushkevich I.A., Zukowski P. Effect of topography on wettability of rapidly solidified Al-In alloys, J. Przegląd Elektrotechniczny, 151 (2016) 151-154.
- [6] Miroshnichenko S.I. Quenching from the Liquid State, Metallurgiya, Moscow, 1982, 168 p. (in Russian).
- [7] Komarov F.F., Kumakhov M.A., Tashlykov I.S. Non-destructive ion beam analysis of surface, Gordon and Breach Science Publishers, London, 1990, 231 p.
- [8] Surface Xplorer (Microtestmachines, 2012), http://microtm.com.
- [9] Raposo M., Ferreira Q., Ribeiro P.A. A Guide for Atomic Force Microscopy Analysis of SoftCondensed Matter, J. Modern research and educational topics in microscopy 2 (2007) 758- 769.
- [10] Kalinichenko A.S., Bergmann G.V. Managed on сontrolled solidification and laser treatment: theory and practice, Technoprint, Minsk, 2001, 367 p. (in Russian).
- [11] Zolotarev S.N., Shumakov A.N. Relief of the contact surface of rapidly quenched tapes, J. The Physics of Metals and Metallography, 64 (1987) 349-357 (in Russian).
- [12] De Haas M., de Hosson J.T.M. Grain boundary segregation and precipitation in aluminium alloys, J. Scripta Materialia, 44 (2001) 281-286.
- [13] Shepelevich V.G., Tashlykova-Bushkevich I.I., Anisovich A.G. Grain structure of rapidly solidified foils of aluminium alloys with low concentration of Fe, Cu, Sb and Ge dopes, J. Physics and Chemistry of Material Treatment, 4 (1999) 86-91 (in Russian).
- [14] Tashlykova – Bushkevich I.I., Shepelevich V.G. The element level-by-level analysis of distribution of components in volume rapidly solidified lightly doped aluminimum alloys, J. Physics and Chemistry of Material Treatment, 4 (2000), 99-105 (in Russian).
- [15] Gao L., McCarthy T.J. Wetting 101°, J. Langmuir, 25 (2009), 14105-14115.
- [16] Leese H., Bhurtun V., Lee K. P., Mattia D. Wetting behaviour of hydrophilic and hydrophobic nanostructured porous anodic alumina, J. Colloid Surf. A: Physicochem. Eng. Aspects, 420 (2013), 53-58.
- [17] Zimon A.D. Adhesion and wetting, Chemistry, Moscow, 1994, 413 p. (in Russian).
- [18] Wenzel R.N. Resistance of solid surfaces to wetting by water, J. Ind. Eng. Chem., 28 (1936), 988-994.
- [19] Baxter S., Cassie A.B.D. The water repellency of fabrics and new water repellence test, J.Text. Inst., 36 (1945), 67-90.
- [20] Gennes P.G., Brochard–Wyart F., Quere D. Capillarity and wetting phenomena: drops, bubbles, pearles, waves, Springer- Verlag, New York, (2004), 292 p.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-013cfa71-e550-4103-bcee-0dcd862e3506