PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of activity coefficient and equilibrium constant models on the speciation of aqueous solutions of H2SO4–MgSO4–Al2(SO4)3 at 235 and 250 °C

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Supersaturation occurs in many industrial applications promoting reactive crystallisation between the reactants to form solutes. These solutes accumulate during precipitation, leading to the formation of scales on the inner walls of the reactor and particularly around the stirrer, causing modifications in the hydrodynamics. This encrustation is responsible for process shutdowns in continuous crystallisation processes. Supersaturation control is essential for industrial processes aimed at controlling or inhibiting the formation of these solids. Knowledge of mineral solubility and chemical speciation is required to account for the composition of the complexes in the system in their various solid or aqueous forms. This speciation is obtained by considering the thermodynamic equilibrium constants of the dissociation/complexation reactions involved in the system, the pressure, and the activity coefficients of the chemical species in their molecular or electrolyte form. From these thermodynamic quantities and the state of the system, we can predict the direction of the reaction. This study highlights the risk of the lack of experimental information on equilibrium constants at high temperatures and moderate pressures. Our goal is to evaluate the accuracy of existing models classically used to predict the equilibrium constant in such very hard conditions encountered in hydrometallurgical processes. Furthermore, we demonstrate the influences of equilibrium constants estimation and activity coefficient models on the speciation of H2SO4–Al2(SO4)3–MgSO4 systems, forming hydronium alunite and kieserite in the laterite liquor of hydrometallurgical processes.
Rocznik
Strony
art. no. 167497
Opis fizyczny
Bibliogr. 30 poz., wykr.
Twórcy
  • University of Toulouse, IMT Mines Albi, UMR CNRS 5302, RAPSODEE Centre, Campus Jarlard, Albi Cedex 09 F-81013, France
  • Prony Resources New Caledonia, Usine du grand sud, route de Kwa neie – Prony – Bp 218, New – Caledonia
  • University of Toulouse, IMT Mines Albi, UMR CNRS 5302, RAPSODEE Centre, Campus Jarlard, Albi Cedex 09 F-81013, France
  • University of Toulouse, IMT Mines Albi, UMR CNRS 5302, RAPSODEE Centre, Campus Jarlard, Albi Cedex 09 F-81013, France
  • Mines Paris, PSL University, CTP Centre Thermodynamique des Procédés, 35 rue Saint Honoré 77305 Fontainebleau Cedex, France
  • University of Toulouse, IMT Mines Albi, UMR CNRS 5302, RAPSODEE Centre, Campus Jarlard, Albi Cedex 09 F-81013, France
  • Mines Paris, PSL University, CTP Centre Thermodynamique des Procédés, 35 rue Saint Honoré 77305 Fontainebleau Cedex, France
  • Prony Resources New Caledonia, Usine du grand sud, route de Kwa neie – Prony – Bp 218, New – Caledonia
  • Prony Resources New Caledonia, Usine du grand sud, route de Kwa neie – Prony – Bp 218, New – Caledonia
Bibliografia
  • ANDERSON, G. M., CASTET, S., SCHOTT, J., MESMER, R. E. (1991). The density model for estimation of thermodynamic parameters of reactions at high temperatures and pressures. Geochimica et Cosmochimica Acta, 55(7), Article 7. https://doi.org/10.1016/0016-7037(91)90022-W
  • BAGHALHA, M. (1999). Aqueous H2SO4-Al2(SO4)3-MgSO4 solutions at 250°C, identification of chemistry and thermodynamics, and application to the pressure acid leaching of laterites [Thesis].
  • BAGHALHA, M., PAPANGELAKIS, VLADIMIROS G. (1998). The ion-association-interaction approach as applied to aqueous H2SO4-Al2(SO4)3-MgSO4 solutions at 250 °C. Metallurgical and Materials Transactions B, 29(5), Article 5. https://doi.org/10.1007/s11663-998-0070-6
  • BROMLEY, L. A. (1973). Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE Journal, 19(2), 313–320.
  • CASAS, J. M., PAPANGELAKIS, V. G., LIU, H. (2005). Performance of Three Chemical Models on the High-Temperature Aqueous Al2(SO4)3−MgSO4−H2SO4−H2O System. Ind. Eng. Chem. Res., 44(9), 2931–2941.
  • COBBLE, J. W., MURRAY, R. C., JR., TURNER, P. J., CHEN, K. (1982). High-temperature thermodynamic data for species in aqueous solution.
  • DICKSON, A. G., WESOLOWSKI, D. J., PALMER, D. A., MESMER, R. E. (1990). Dissociation constant of bisulfate ion in aqueous sodium chloride solutions to 250 degree C. Journal of Physical Chemistry; (United States), 94:20.
  • GULTOM, T., SIANIPAR, A. (2020). High pressure acid leaching: A newly introduced technology in Indonesia. IOP Conference Series: Earth and Environmental Science, 413, 012015.
  • HELGESON, H. C. (1967). Thermodynamics of complex dissociation in aqueous solution at elevated temperatures. The Journal of Physical Chemistry, 71(10), Article 10. https://doi.org/10.1021/j100869a002
  • HELGESON, H. C. (1981). Prediction of the thermodynamic properties of electrolytes at high pressures and temperatures. Physics and Chemistry of the Earth, 13–14, 133–177.
  • HELGESON, H. C., & KIRKHAM, D. H. (1974). Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; II, Debye-Huckel parameters for activity coefficients and relative partial molal properties. American Journal of Science, 274(10), 1199–1261.
  • HOFF, J. H. (1896). Studies in Chemical Dynamics. F. Muller.
  • LANGMUIR, D. (1997). Aqueous environmental geochemistry. Prentice Hall.
  • LIU, H., PAPANGELAKIS, V. G. (2005). Chemical modeling of high temperature aqueous processes. Hydrometallurgy, 79(1), 48–61.
  • LIU, H., PAPANGELAKIS, V. G., ALAM, M. S., SINGH, G. (2003). Solubility of Hematite in H2SO4 Solutions at 230-270°C. Canadian Metallurgical Quarterly, 42(2), 199–207.
  • MARSHALL, W. L., FRANCK, E. U. (1981). Ion product of water substance, 0–1000 °C, 1–10,000 bars New International Formulation and its background. Journal of Physical and Chemical Reference Data, 10(2), 295–304.
  • MARSHALL, W. L., SLUSHER, R. (1965). Aqueous Systems at High Temperature. XV. Solubility and Hydrolytic Instability of Magnesium Sulfate in Sulfuric Acid-Water and Deuterosulfuric Acid-Deuterium Oxide Solutions, 200° to 350° C. J. Chem. Eng. Data, 10(4), 353–358.
  • MESHRAM, P., ABHILASH, PANDEY, B. D. (2019). Advanced Review on Extraction of Nickel from Primary and Secondary Sources. Mineral Processing and Extractive Metallurgy Review, 40(3), 157–193.
  • MOLDOVAN, M., KRUPP, E. M., HOLLIDAY, A. E., DONARD, O. F. X. (2004). High resolution sector field ICP-MS and multicollector ICP-MS as tools for trace metal speciation in environmental studies: A review. Journal of Analytical Atomic Spectrometry, 19(7), 815–822.
  • PAPANGELAKIS, V. G., LIU, H., RUBISOV, D. H. (2004). Solution chemistry and reactor modelling of the pal process: Successes and challenges. International Laterite Nickel Symposium, 289–305.
  • PARKHURST, D. L. (1990). Ion-Association Models and Mean Activity Coefficients of Various Salts. In Chemical Modeling of Aqueous Systems II (Vol. 416, pp. 30–43). American Chemical Society.
  • PITZER, K. S. (Ed.). (1991). Activity Coefficients in Electrolyte Solutions (2nd ed.).
  • PITZER, K. S. (2002). Thermodynamics of electrolytes. I. Theoretical basis and general equations. In ACS Publications.
  • PLUMMER, N., JONES, B. F., TRUESDELL, A. H. (1976). WATEQF; a FORTRAN IV version of WATEQ: A computer program for calculating chemical equilibrium of natural waters. In WATEQF; a FORTRAN IV version of WATEQ : a computer program for calculating chemical equilibrium of natural waters (USGS Numbered Series No. 76–13; Water-Resources Investigations Report, Vols 76–13). Dept. of the Interior, Geological Survey, Water Resources Division,. https://doi.org/10.3133/wri7613
  • ROSS, C. F. (2012). 2.02—Headspace Analysis. In J. Pawliszyn (Ed.), Comprehensive Sampling and Sample Preparation (pp. 27–50). Academic Press. https://doi.org/10.1016/B978-0-12-381373-2.00036-3
  • SHOCK, E. L., HELGESON, H. C. (1988). Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C. Geochimica et Cosmochimica Acta, 52(8), 2009–2036.
  • THERMODDEM DATABASE. Thermochemical and mineralogical tables for geochemical modeling. Retrieved 29 June 2022, from https://thermoddem.brgm.fr/
  • WHITTINGTON, B. I., MUIR, D. (2000). Pressure Acid Leaching of Nickel Laterites: A Review. Mineral Processing and Extractive Metallurgy Review, 21(6), 527–599.
  • YAN, X., NI, Z. (2001). Speciation of metals and metalloids in biomolecules by hyphenated techniques. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu, 21(2), 129–138.
  • ZEMAITIS, J. F., CLARK, D. M., RAFAL, M., SCRIVNER, N. C. (1986). Activity Coefficients of Single Strong Electrolytes. In Handbook of Aqueous Electrolyte Thermodynamics (pp. 46–203). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470938416.ch4
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01387056-bb6e-4b11-8289-f9c919d788de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.