Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Języki publikacji
Abstrakty
In this study, the surface roughness of galvannealed low carbon Al-killed and Ti-Nb stabilized interstitial free steels was investigated using the industrial galvannealing process parameters. The iron content of the coatings was also analysed to establish a relationship with the surface roughness and coating composition. The surface roughness displayed an exponential behaviour with increasing of annealing time at each annealing temperature in both steel coatings, which was in an increasing order in the galvannealed low carbon Al-killed steel coating, whereas it was a reverse order in the galvannealed Ti-Nb stabilized interstitial free steel coating. The craters were observed on the galvannealed coatings resulting in high surface roughness. Increasing the iron content of the coatings leads to a reduction in the surface roughness with δ1k phase.
Wydawca
Czasopismo
Rocznik
Tom
Strony
841--857
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
- Bulent Ecevit University, Alapli Vocational High School, Zonguldak 67850, Turkey
autor
- Bulent Ecevit University, Department of Mechanical Engineering, Zonguldak 67100, Turkey
autor
- Duzce University, Department of Mechanical Engineering, Duzce 81620, Turkey
Bibliografia
- [1] T. Irie, Developments of zinc-based coatings for automotive sheet steel in Japan, in: G. Krauss, D. Matlock (Eds.), Zinc-Based Steel Coating Systems: Metallurgy and Performance, TMS/AIME, Warrendale, PA, USA (1990).
- [2] Y. Hisamatsu, Proc. 1st Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet (Galvatech’89), ISIJ, Tokyo, Japan (1989).
- [3] A. R. Marder, Prog. Mater. Sci. 45, 191-271 (2000).
- [4] N. Bandyopadhyay, G. Jha, A. K. Singh, T. K. Rout, N. Rani, Surf. Coat. Tech. 200, 4312-4319 (2006).
- [5] M. A. Ghoniem, K. Lohberg, Metall. 26 (10), 1026-1030 (1972).
- [6] O. Kubaschewski, Iron-Binary Phase Diagrams, Springer-Verlag Berlin Heidelberg GmbH, Aachen, Germany (1982).
- [7] J. Nakano, D. V. Malakhov, G. R. Purdy, Calphad, 29 (4), 276-288 (2005).
- [8] R. Kainuma, K. Ishida, Tetsu To Hagane 91, 349-355 (2005).
- [9] G. Beranger, G. Henry, G. Sanz, The Book of Steel, Lavoisier Publishing with the participation of SOLLAC-Usinor Group, Paris, France (1996).
- [10] T. Nakamori, Y. Adachi, T. Toki, A. Shibuya, ISIJ Int. 36 (2), 179-186 (1996).
- [11] I. Hertveldt, B. C. De Cooman, J. Dilewijns, 39th MWSP Conference Proceedings, ISS-AIME, ISS, Indianapolis, IN, USA (1997).
- [12] M. Chida, H. Irie, U.S. Patent Number 10,597,764 B2 (2020).
- [13] S. Sriram, V. Krishnardula, H. Hahn, IOP Conf. Ser-Mat. Sci. 418 (1), 012094 (2018).
- [14] M. Sakurai, J. I. Inagaki, M. Yamashita, Tetsu-to-Hagane, 89 (1), 18-22 (2003).
- [15] S. Sepper, P. Peetsalu, M. Saarna, Agron. Res., Special Issue 1, 229-236 (2011).
- [16] K. I. V. Vandana, M. Rajya Lakshmi, Int. J. Innov. Eng. Tech. 5 (2), 359-363 (2015).
- [17] M. Urai, M. Arimura, M. Terada, M. Yamaguchi, H. Sakai, S. Nomura, Tetsu To Hagane 43 (19), 27-30 (1996).
- [18] C. S. Lin. M. Meshii, C. C. Cheng, ISIJ Int. 35 (5), 503-511 (1995).
- [19] F. E. Goodwin, T. Indian I. Metals 66, 5-6 (2013).
- [20] G. Moréas, Y. Hardy, Rev. Met. Paris 98 (6), 599-606 (2001).
- [21] A. van der Heiden, A. J. C. Burghardt, W. van Koesveld, E.B. van Perlstein, M. G. J. Spanjers, Galvanneal Microstructure and Anti-Powdering Process Windows, in: A. R. Marder (Ed.), The Physical Metallurgy of Zinc Coated Steel, TMS/AIME Conf. Proc., San Francisco, CA, USA (1994).
- [22] P. M. Hale, R. N. Wright, F. E. Goodwin, SAE Technical Paper 2001-01-0084, 2001.
- [23] J. Inagaki, M. Sakurai, T. Watanabe, ISIJ Int. 35 (11), 1388-1393 (1995).
- [24] S. P. Carless, G. A. Jenkins, V. Randle, Ironmak. Steelmak. 27 (1), 69-74 (2000)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Identyfikator YADDA
bwmeta1.element.baztech-01381fea-d482-46c5-b8ab-fc2d94825092