PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of renewable energy sources on the overload of high voltage lines – power flow tracking versus direct current method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Studying the impact of renewable energy sources planned to be connected to the grid, requires the preparation of expert opinions. The task of this opinion is to verify that there are possibilities enabling the connection of the considered source to the network. Each opinion is required to take into account other facilities and those sources which were previously connected to the grid or connection agreement were signed with them. The need to take into account such a large number of sources contributes to potential thermal overloads of high-voltage lines. Sometimes these overloads are insignificant, but in certain situations it turns out that their occurrence may be a reason for refusing to sign connection agreements for new sources. According to network operators, their presence may constitute a threat to the operational security of the grid. The article presents the use of the method of tracking active power flows and the DC method of determining power flows to estimate the impact of these sources on thermal overloading of lines. Using of the IEEE-118 test network, selected nodes were analysed where connecting sources might significantly worsen overloads previously observed or would cause new overloads. The proposed approach will enable potential investors to make proper decisions regarding selection of source connection points. Combining the results obtained by both methods at the same time will allow for the indication of appropriate connection nodes for sources from the point of view of minimising the number of overloaded lines and prospective costs of their uprating.
Rocznik
Strony
519--541
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr., wz.
Twórcy
  • Department of Power Engineering, Lublin University of Technology, Nadbystrzycka 38A str., 20-618 Lublin, Poland
  • Department of Power Engineering, Lublin University of Technology, Nadbystrzycka 38A str., 20-618 Lublin, Poland
  • Department of Power Engineering, Lublin University of Technology, Nadbystrzycka 38A str., 20-618 Lublin, Poland
autor
  • Department of Electric Power Engineering, Technical University of Kosice, Letna 9 str., 042 00 Kosice, Slovakia
  • Department of Power Engineering, Lublin University of Technology, Nadbystrzycka 38A str., 20-618 Lublin, Poland
Bibliografia
  • [1] Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on the internal market for electricity (2019).
  • [2] Dabbaghjamanesh M., Kavousi-Fard A., Mehraeen S., Zhang J., Dong Z., Sensitivity Analysis of Renewable Energy Integration on Stochastic Energy Management of Automated Reconfigurable Hybrid AC–DC Microgrid Considering DLR Security Constraint, IEEE Transactions on Industrial Informatics, vol. 16, no. 1, pp. 120–131 (2020), DOI: 10.3390/en14248274.
  • [3] Ginocchi M., Ponci F., Monti A., Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started, Energies, vol. 14, no. 24, 8274 (2021), DOI: 10.3390/en14248274.
  • [4] Peschon J., Piercy D., Tinney W., Tveit O., Sensitivity in Power Systems, IEEE Transactions on Power Apparatus and Systems, vol. 87, no. 8, pp. 1687–1696 (1968), DOI: 10.1109/TPAS.1968.292130.
  • [5] Schyska B., Kies A., Schlott M., von Bremen L., Medjroubi W., The sensitivity of power system expansion models, Joule, vol. 5, no. 10, pp. 2606–2624 (2021), DOI: 10.1016/j.joule.2021.07.017.
  • [6] Chureemart J., Churueang P., Sensitivity analysis and its applications in power system improvements, 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, Thailand, pp. 945–948 (2008).
  • [7] Pijarski P., Kacejko P., Elimination of Line Overloads in a Power System Saturated with Renewable Energy Sources, Energies, vol. 16, no. 9, 3751 (2023), DOI: 10.3390/en16093751.
  • [8] Manohar P., Rajesh P., H Shajin F., A Comprehensive Review of Congestion Management in Power System, International Journal of Integrated Engineering, vol. 14, no. 6 (2022), DOI: 10.30880/ijie.2022.14.06.030.
  • [9] Pillay A., Prabhakar Karthikeyan S., Kothari D., Congestion management in power systems – A review, International Journal of Electrical Power and Energy Systems, vol. 70, pp. 83–90 (2015), DOI: 10.1016/j.ijepes.2015.01.022.
  • [10] Yuan C., Hu C., Li T., Review of Congestion Management Methods for Power Systems, IOP Conference Series: Earth and Environmental Science, vol. 233, 32025 , DOI: 10.1088/1755-1315/233/3/032025.
  • [11] Yusoff N., Zin A., Bin Khairuddin A., Congestion management in power system: A review, A review, 3rd International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), Johor Bahru, Malaysia, pp 22–27 (2017).
  • [12] Longchao Z., Jianjun X., Limei Y., Research on congestion elimination method of circuit overload and transmission congestion in the internet of things, Multimedia Tools and Applications, vol. 76, no. 17, pp. 18047–18066 (2017), DOI: 10.1007/s11042-016-3686-6.
  • [13] Jobanputra J., Kotwal C., Power flow management analysis using compensating techniques for managing congestion within electrical energy network, SN Applied Sciences, vol. 3, no. 2 (2021), DOI: 10.1007/s42452-021-04253-9.
  • [14] Pijarski P., Kacejko P., Miller P., Advanced Optimisation and Forecasting Methods in Power Engineering— Introduction to the Special Issue, Energies, vol. 16, no. 6, 2804 (2023), DOI: 10.3390/en16062804.
  • [15] Fernandes A., Júnior M., Oliveira A., Fonseca J., A linear model for overload rerouting and testing switching measures for overload elimination by means of Relief Functions, In Proceedings IX Simpósio Brasileiro de Sistemas Elétricos, IX Simpósio Brasileiro de Sistemas Elétricos, Santa Maria, Rio Grande do Sul, Brasil (2022).
  • [16] Medeiros Junior M., Costa Oliveira A.V., Costa Oliveira A.R., Employment of Corrective Switching in Congestion Management for Eliminating Multiple Overloads in Power Systems, IEEE Latin America Transactions, vol. 14, no. 1, pp. 179–187 (2016), DOI: 10.1109/TLA.2016.7430078.
  • [17] da Fonseca J., da Costa Oliveira A., de Almeida M., da Luiz Silva J., de Medeiros M., Self-healing feature incorporated to RTDS for solving reconfiguration network problem, Simposio Brasileiro de Sistemas Eletricos (SBSE), Niteroi, Brazil, pp. 1–6 (2018).
  • [18] da Fonseca J., da Costa Oliveira A., de Almeida M.A.D, da Silva J., de Medeiros M., A New Algorithm for Implementing Automation Process Based on Self-Healing Technique, IEEE PES Transmission and Distribution Conference and Exhibition – Latin America (T&D-LA), Lima, Peru, pp. 1–5 (2018).
  • [19] Pijarski P., Dynamic Fitting of Generation Level to Transmission Capacity of Overhead Lines, phd thesis, Lublin University of Technology, Lublin, Poland (2011).
  • [20] Petrovic I., Józsa L., Galić D., The application of fuzzy inference systems in overload elimination and correction, Automatika, vol. 57, no. 1, pp. 120–128 (2016), DOI: 10.7305/automatika.2016.02.1060.
  • [21] Dakhare R., Chandrakar V., Congestion Management by Phase Shifting Transformer Using Fuzzy Logic Control, 6th International Conference for Convergence in Technology (I2CT), Maharashtra, India, pp. 1–4 (2021).
  • [22] Halasiddappa M.A., Shivakumar M.R., Phase shifting transformer to reduce power congestions and to redistribute power in interconnected systems, International Journal of Electrical and Computer Engineering (IJECE), vol. 13, no. 2, pp. 1215–1220 (2023), DOI: 10.11591/ijece.v13i2.pp1215-1220.
  • [23] Kacejko P., Pijarski P., Connecting of wind farms -limitations instead of oversized investment, Rynek Energii, vol. 80, no. 1, pp. 10–15 (2009).
  • [24] Verma S., Saha S., Mukherjee V., Optimal rescheduling of real power generation for congestion management using teaching-learning-based optimization algorithm, Journal of Electrical Systems and Information Technology, vol. 5, no 3, pp. 889–907 (2018), DOI: 10.1016/j.jesit.2016.12.008.
  • [25] Shandilya A., Gupta H., Sharma J., Method for generation rescheduling and load shedding to alleviate line overloads using local optimisation, IEE Proceedings C Generation, Transmission and Distribution, vol. 140, no. 5, pp. 337-342 (1993), DOI: 10.1049/ip-c.1993.0050.
  • [26] Abrantes H., Castro C., New branch overload elimination method using nonlinear programming, Power Engineering Society Summer Meeting (Cat. No.00CH37134), Seattle, WA, USA, vol. 1, pp. 231–236 (2000).
  • [27] Abrantes H., Castro C., A New Efficient Nonlinear Programming-Based Method for Branch Overload Elimination, Electric Power Components and Systems, vol. 30, no. 6, pp. 525–537 (2002), DOI: 10.1080/15325000290084948.
  • [28] Hedman K., O’Neill R., Fisher E., Oren S., Optimal Transmission Switching with Contingency Analysis, IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1577–1586 (2009), DOI: 10.1109/TPWRS.2009.2020530.
  • [29] Li S., Wang L., Gu X., Zhao H., Sun Y., Optimization of loop-network reconfiguration strategies to eliminate transmission line overloads in power system restoration process with wind power integration, International Journal of Electrical Power and Energy Systems, vol. 134, 107351 (2022), DOI: 10.1016/j.ijepes.2021.107351.
  • [30] Müller N., Quintana V., Line and shunt switching to alleviate overloads and voltage violations in power networks, IEE Proceedings C Generation, Transmission and Distribution, vol. 136, no. 4, pp. 246–253 (1989), DOI: 10.1049/ip-c.1989.0032.
  • [31] Shao W., Vittal V., Corrective Switching Algorithm for Relieving Overloads and Voltage Violations, IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 1877–1885 (2005), DOI: 10.1109/TPWRS.2005.857931.
  • [32] Hong Y.-Y., An enhanced expert system with fuzzy reasoning for line flow control in power systems, Electric Power Systems Research, vol. 39, no. 1, pp. 1–8 (1996), DOI: 10.1016/S0378-7796(96)01088-7.
  • [33] Lenoir L., Kamwa I., Dessaint L.-A., Overload Alleviation With Preventive-Corrective Static Security Using Fuzzy Logic, IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 134–145 (2009), DOI: 10.1109/TPWRS.2008.2008678.
  • [34] Udupa A., Purushothama G., Parthasarathy K., Thukaram D., A fuzzy control for network overload alleviation, International Journal of Electrical Power and Energy Systems, vol. 23, no. 2, pp. 119-128 (2001), DOI: 10.1016/S0142-0615(00)00049-1.
  • [35] Bialek J., Tracing the flow of electricity, IEE Proceedings – Generation, Transmission and Distribution, vol. 143, no. 4, pp. 313–320 (1996), DOI: 10.1049/ip-gtd:19960461.
  • [36] Ziemianek S., Mathematical models for the allocation of power transmission losses using active and reactive power flow tracking methods, Elektryka (in Polish), OWPW, no. 127 (2003).
  • [37] Kattuman P., Green R., Bialek J., Allocating electricity transmission costs through tracing: a gametheoretic rationale, Operations Research Letters, vol. 32, no. 2, pp. 114–120 (2004), DOI: 10.1016/S0167- 6377(03)00095-6.
  • [38] Glover J., Overbye T., Sarma M., Power system analysis & design, Cengage Learning (2017).
  • [39] Grainger J., Power system analysis, McGraw-Hill (1994).
  • [40] Kremens Z., Sobierajski M., Analysis of power systems, WNT (1996).
  • [41] Nagsarkar T., Sukhija M., Power system analysis, Oxford University Press (2016).
  • [42] Saadat H., Power system analysis, PSA Publishing (2010).
  • [43] https://www.kios.ucy.ac.cy/testsystems/index.php/ieee-118-bus-modified-test-system/, accessed January 2024.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0133c485-60f2-474a-bb17-ce34800e4730
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.