Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Urinary incontinence (UI) is a common condition, especially in women, and affects the quality of life in a physical, social, and economic meaning. Despite improvements in surgical techniques and the implementation of minimally invasive procedures, male and female stress UI still affects their well-being. Treatment limitations have encouraged researchers to investigate new approaches, including those of tissue engineering. The injection of autologous mesenchymal-derived stem cells (AMDC) might rebuild the urethra sphincter function and minimize leakage symptoms. The treatment is carried out with a rigid endoscope. The aim of this study is to present a practical calibration procedure for an oblique-viewing endoscope imaging system. This article presents the results of an examination of the variability of the internal camera’s parameters with the angle of rotation of the endoscope’s cylinder. The research proves that the most variable parameters are the coordinates of the image plane’s principal point. The developed model of variability can be implemented as a simple look-up table in a realtime operating device. In this article, a tool is proposed for the computation of the relative angle of cylinder’s rotation based only on images. All developed methods can be implemented in a robot-assisted system for an AMDC urethra sphincter injection procedure.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
133--140
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Krakow
autor
- Department of Gynecology and Oncology, Jagiellonian University Collegium Medicum, Krakow, Poland.
autor
- Department of Gynecology and Oncology, Jagiellonian University Collegium Medicum, Krakow, Poland.
autor
- Department of Measurement and Electronics, AGH University of Science and Technology, Krakow, Poland
autor
- Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Krakow
Bibliografia
- 1. Hejj R, Calleary JG, McNulty M. Urology: the home of endoscopy. USA: INTECH, 2011.
- 2. Nikolavasky D, Stangel-Wójcikiewicz K, Stec M, Chancellor MB. Stem cell therapy: a future treatment of stress urinary incontinence. Semin Reprod Med 2011;29:61–70.
- 3. Wiens K, Green S, Grecov D. Novel optical uroflowmeter using image processing techniques. Measurement 2014;47:314–20. 4. Iakovidis DK, Maroulis DE, Karkanis SA, Papageorgas P, Tzivras M. Texture multichannel measurements for cancer precursors’ identification using support vector machines. Measurement 2004;36:297–313.
- 5. Iwano S, Imaizumi K, Okada T, Hasegawa Y, Naganawa S. Virtual bronchoscopy-guided transbronchial biopsy for aiding the diagnosis of peripheral lung cancer. Eur J Radiol 2011;79:155–9.
- 6. Stangel-Wójcikiewicz K, Basta A, Piwowar M, Petko M, Karpiel G, Panek D, et al. Operative procedures supported with robotics systems and available endoscope procedures in operative gynecology. Bio-Algorithms Med-Syst 2014;10:139–49.
- 7. Sładek J, Ostrowska K, Kohut P, Holak K, Gąska A, Uhl T. Development of a vision based deflection measurement system and its accuracy assessment. Measurement 2013;46:1237–49. 8. Yamaguchi T, Nakamoto M, Sato Y, Nakajima Y, Konishi K, Hashizume M, et al. Camera model and calibration procedure for oblique-viewing endoscope. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI). Berlin/Heidelberg: Springer, 2003:373–81.
- 9. Yamaguchi T, Nakamoto M, Sato Y, Hashizume M, Sugano N, Yoshikawa H, et al. Development of camera model and calibration procedure for an oblique-viewing endoscope. Electron Commun Jpn Part II Electron 2005;88:19–31.
- 10. Wu C, Jaramaz B, Narasimhan SG. A full geometric and photometric calibration method for oblique-viewing endoscopes. Comput Aided Surg 2010;15:19–31.
- 11. De Buck S, Maes F, D’Hoore A, Suetens P. Evaluation of a novel calibration technique for optically tracked oblique laparoscopes. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI). Berlin/Heidelberg: Springer, 2007:467–74.
- 12. Melo R, Barreto JP, Falcao G. A new solution for camera calibration and real-time image distortion correction in medical endoscopy – initial technical evaluation. Biomed Eng IEEE Trans 2012;59:634–44.
- 13. Barreto J, Santos JM, Menezes P, Fonseca F. Ray-based calibration of rigid medical endoscopes. In: 8th Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras (OMNIVIS), 2008.
- 14. Oropesa I, de Jong TL, Sánchez-González P, Dankelman J, Gómez EJ. Feasibility of tracking laparoscopic instruments in a box trainer using a leap motion controller. Measurement 2016;80:115–24.
- 15. Fukuda N, Chen YW, Nakamoto M, Okada T, Sato Y. A scope cylinder rotation tracking method for oblique-viewing endoscopes without attached sensing device. In: Software Engineering and Data Mining (SEDM), 2nd International Conference on. IEEE, 2010:684–7.
- 16. Zhang Z. Flexible camera calibration by viewing a plane from unknown orientations. In: Computer Vision, Proceedings of the 7th IEEE International Conference on. IEEE, 1999;1:666–73.
- 17. Kohut P, Gaska A, Holak K, Ostrowska K, Sładek J, Uhl T, et al. A structure’s deflection measurement and monitoring system supported by a vision. Tech Mess 2014;81:635–43.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-012ee94a-aa3d-45e0-aa88-57fbf31cd062