PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Wybrane przykłady niestandardowych badań wytrzymałościowych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Selected examples of nonstandard strength investigations
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono wybrane przykłady niestandardowych badań wytrzymałościowych, których przeprowadzanie nie jest jeszcze ujęte przez odpowiednie normy. Należą do nich badania w złożonym stanie naprężenia w celu wyznaczenia powierzchni plastyczności materiałów, badania efektów drugorzędnych towarzyszących obciążeniom cyklicznym oraz badania wykonywane przy wysokich prędkościach odkształcenia dla oceny dynamicznych charakterystyk materiałowych niezbędnych przy projektowaniu elementów narażonych na uderzenia.
EN
The paper presents selected examples of the nonstandard strength investigations, conducting of which is not described by the appropriate standards as yet. This group of tests includes investigations under complex stress states in order to determine yield surfaces of materials, investigations of secondary effects associated to cyclic loadings, and investigations being performed for high strain rates in order to evaluate dynamic material characteristics to be necessary during designing of elements working in the impact conditions.
Wydawca
Rocznik
Tom
Strony
89--109
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
  • Instytut Transportu Samochodowego
Bibliografia
  • [1] Hecker S.S., Experimental studies of yield phenomena in biaxially loaded metals, in: Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects, The Winter Annual Meeting of The American Society of Mechanical Engineers, New York City, NY, Ed. Stricklin and Saczalski, ASME, AMD, 20, 1-33, 1976.
  • [2] Ikegami K., An historical perspective of the experimental study of subsequent yield surfaces for metal - parts 1 & 2, P.Soc.Mat.Sci., vol. 4, 491-505, 1975, and vol.24, 709-719, 1975.
  • [3] Kowalewski Z.L., "A role of prestraining type on mechanical properties of engineering materials", Proc. of Plasticity '99: The Seventh International Symposium on Plasticity and Its Current Applications, Cancun, Mexico, 5-13.01.1999, Ed. A.S. Khan, Neat Press, Fulton, Maryland.
  • [4] Kowalewski Z.L., Szymczak T., Eksperymentalna ocena stanu materiałów na podstawie koncepcji powierzchni plastyczności, Mat. Konf. III Sympozjum Mechaniki Zniszczenia Materiałów i Konstrukcji, Augustów, 1-4 czerwca 2005.
  • [5] Lamba H.S., Sidebottom O.M., Cyclic plasticity for non-proportional paths, ASME J. Eng. Mat. Tech., 100, (1978), 96-111.
  • [6] Benallal A., Markuis M., Constitutive equations for non-proportional cyclic elasto-viscoplasticity, ASME J. Eng. Mat. Tech., 109, (1987), 326-335.
  • [7] Heng S., Krempl E., Experimental determination of strain-induced anisotropy during non-proportional straining of an Al./Mg alloy at room temperature, Int. J. Plasticity, 7, (1991), 827-846.
  • [8] Dietrich L., Kowalewski Z.L., Experimental investigation of an anisotropy in copper subjected to predeformation due to constant and monotonic loadings. Int. J. Plasticity, 13, (1997), 87-109.
  • [9] Dietrich L., Socha G., Kowalewski Z.L., Influence of loading parameters on behavior of 55 steel under complex stress states due to circular strain path, Proc. 19th Symp. Exp. Mech. of Sol., Jachranka (2000), ZGPW, Warsaw, (2000), 556.
  • [10] Krempl E., LU H., The hardening and rate-dependent behavior of fully annealed AISI type 304 stainless steel under biaxial in-phase and out-of-phase strain cycling at room temperature, Trans. ASME J. Eng. Mat. Tech., 106, (1984), 376-382.
  • [11] Murakami S., Kawai M., Aoki K., Ohmi Y,: Temperature-dependence of multiaxial non-proportional cyclic behavior of type 316 stainless steel, ASME J. Eng. Mat. Tech., 111, (1989), 32-39.
  • [12] Murakami S., Kawai M., Ohmi Y., Effects of amplitude-history and temperature-history on multiaxial cyclic behavior of type 316 stainless steel, ASME J. Eng. Mat. Tech., 111, (1989), 278-285.
  • [13] Ohashi Y., Kawai M., Kaito T., Inelastic behavior of type 316 stainless steel under multiaxial non-proportional cyclic stressing at elevated temperature, ASME J. Eng. Mat. Tech., 107, (1985), 101-109.
  • [14] Tanaka E., A non-proportionality parameter and a cyclic viscoplastic constitutive model taking into account amplitude dependences and memory effects of isotropic hardening, European Journal of Mechanics, A/Solids, 13,(1994), 155-173.
  • [15] Doong S.H., Socie D.F., Deformations mechanisms of metals under complex non-proportional cyclic loading, Fatigue under Biaxial and Multiaxial Loadings, pages 305-320, London: Mechanical Engineering Publications (1991).
  • [16] Calloch S., Marquis D., Additional hardening due to tension-torsion non-proportional loadings: Influence of the loading path shape, Multiaxial Fatigue and Deformation Testing Techniques, ASTM STP 1280, Philadelphia, (1997), 113-130.
  • [17] Cailletaud G., Doquet V, Pineau A., Cyclic multiaxial behavior of an austenitic stainless steel, Fatigue under Biaxial and Multiaxial Loadings, 131-149, London: Mechanical Engineering Publications (1991).
  • [18] Khan A.S., Wang X., On non-proportional infinitesimal plastic deformation after finite plastic prestraining and partial unloading, J. Mech. Phys. Solids, 36, (1988), 519-535.
  • [19] Krempl E., Cheng S., The experimental determination of the stress responses of an Al/Mg alloy to a polygonal strain path after three levels of prestraining, Acta Mechanica 101, (1993), 93-109.
  • [20] Korbel A., Bochniak W., The structure based design of metal forming operations, J. Mater. Proc. Technology, 53, 229, 1995.
  • [21] Bochniak W., Korbel A., R. Szyndler, Innovative solutions for metal forming, Proc. Inter. Conf. MEFORM 2001 - Herstellung von Rohren und Profilen, Institut fur Metallformung Tagungsband, 239, Freiberg/Riesa 2001
  • [22] Korbel A., Bochniak W., Method of plastic forming of materials, U.S. Patent No 5,737,959, 1998.
  • [23] Kolsky H., "An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading", Proc. Phys. Soc. London, 62B, 676 (1949).
  • [24] Lindholm U.S., "Some Experiments with the Split Hopkinson Pressure Bar", J. Mech. Phys. Solids, Y2 (5), 317 (1964).
  • [25] Dharan, C. K. M., Hauser, F. E., "Determination of Stress - Strain Characteristic at Very High Strain Rates", Experimental Mechanics, 10, 370 (1970).
  • [26] Abou - Sayed S., Clifton R. J., Hermann L., The oblique plate impact experiment, Exp. Mech., v. 16 (1976), s. 127.
  • [27] Gupta Y. M., Shear measurements in shock loaded solids, Appl. Phys. Lett., v. 29 (1976), s. 694.
  • [28] Kim K. S., Clifton R. J., Kumar P., A combined normal and transverse displacement interferometr with an application to impact of y-cat quartz, J. Appl. Phys., v. 48 (1977), s. 4132.
  • [29] Malinowski J.Z., Dietrich L., Kruszka L., Kowalewski Z.L., Raport projektu badawczego KBN Nr 7 T07A 02118 pt. Opracowanie doświadczalnej metody badania lepkoplastycznych własności metali w zakresie bardzo wysokich prędkości odkształcenia 10 000 < ε < 100 000 1/s.
  • [30] Gorham, D. A., "Measurement of Stress-Strain Properties of Strong Metals at Very High Rates of Strain", Proc. Conf. On Mech. Prop. At High Rates Strain, Conf. Ser. No. 47, Oxford, March (1979), 16.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-012691c3-3ca6-473a-b679-47226034d1c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.