PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification of PVC plastisol with silver nanoparticles to obtain protective materials with antibacterial properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we developed and characterized the membranes based on polyvinyl chloride plastisol modified with silver nanoparticles deposited on silica. The aim of the study was to obtain a functional PVC plastisol composite for use as linings and protective coatings, with improved mechanical, thermal, and antimicrobial properties. The plastisol was prepared by mixing PVC resin with a plasticizer (bis(2-ethylhexyl) adipate). Silver nanoparticles were produced by two methods: chemical reduction using sodium citrate and gum arabic, and these particles were deposited on Aerosil®200 silica. These composites were introduced into plastisol at different concentrations and then processed into films by gelation and hydraulic pressing. The formation of silver nanoparticles was confirmed by UV-Vis spectrophotometry, and the morphology of the composites was examined by scanning electron microscopy. Further characterization of the materials included infrared spectroscopy, thermomechanical analysis, mechanical property testing, and thermogravimetric analysis. Mechanical properties such as Young's modulus, tensile strength, and elongation at break were determined by static tensile tests. Shore hardness tests were also performed to evaluate the stiffness of the composites. The antimicrobial activity of the membranes was evaluated according to ASTM method E2149-01 using reference strains of S. aureus and E. coli. Studies have shown that silver nanoparticles effectively inhibited the growth of E. coli, especially at higher concentrations of AgNPs, while they had no effect on S. aureus. AgNPs modified membranes obtained from the reduction of AgNO₃ with sodium citrate and deposited on silica showed higher microbiological activity than those with AgNPs reduced with gum arabic. An optimal filler content in the range of 1 to 1.5% provides the most favorable combination of mechanical, thermal, and antibacterial properties.
Słowa kluczowe
Twórcy
  • Faculty of Chemical Engineering and Technology, Bydgoszcz University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland
  • Faculty of Chemical Engineering and Technology, Bydgoszcz University of Science and Technology, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland
autor
  • Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
Bibliografia
  • 1. Nugent P. Rotational Molding; Applied Plastics Engineering Handbook; Processing, Materials, and Applications Plastics Design Library, 2017, 321–343.
  • 2. Savczenko B., Sova N., Beloshenko V., Debeluy B., Slieptsov A., Vozniak I. New approach for extrusion additive manufacturing of soft and elastic articles from liquid-PVC-based consumable materials, Polymers, 2022, 14(21), 4683, https://doi.org/10.3390/polym14214683.
  • 3. Pivsa-Art. S., Thanabat S., Phasuk G., Bumrungsuk T. Improvement of thermal stability of PVC plastisol dip mlding products, Annual Technical Conference – ANTEC, Conference Proceedings, 2014, 2197–2200.
  • 4. Tworek, M., Skowronski, Ł., Makarewicz, E., Kowalik, J. Properties of UV-irradiated poly (vinyl chloride) membranes containing cadmium pigments, Scientific Reports, 2021, 11, 18165, https://doi.org/10.1038/s41598-021-96713-w.
  • 5. Keibal, N.A., Kablov, V.F., Stepanova, A.G., Ikryannikova, V.V. Development of a fire-resistant polyvinylchloride coating for the production of fire curtains. Journal of Applied Polymer Science. Serie D 2022, 15, 552–556, https://doi.org/10.1002/app.34647.
  • 6. Jabbari M., Akesson D., Taherzadeh M. Novel lightweight and highly thermally insulative silica aerogel-doped poly(vinyl chloride)-coated fabric composite, Journal of Reinforced Plastics and Composites, 2015, 34,19, https://doi.org/10.1177/0731684415578306.
  • 7. Vogt, W.C., Jia, C., Wear, K.A., Garra, B., Pfefer, T.J. Development and validation of a biologically realistic tissue-mimicking material for photoacoustics and other bimodal optical-acoustic modalities, Proceedings Volume 10056, Design and Quality for Biomedical Technologies X; 100560C, 2017, https://doi.org/10.1117/12.2254596.
  • 8. Jaime R.A.O., Basto R.L.Q., Lamien B., Eibner S., Fudym O. Fabrication methods of phantoms simulating optical and thermal properties, Procedia Engineering, 2013, 59, 30–36, https://doi.org/10.1016/j.proeng.2013.05.090.
  • 9. Muh W.S., Ina A., Indri H., Yayat I.S. Silica from geothermal waste as reinforcing filler in artificial leather, Key Engineering Materials, 2020, 849, 78–83, https://doi.org/10.4028/www.scientific.net/KEM.849.78.
  • 10. Wirnitzer, U., Rickenbacher, U., Katerkamp, A., Schachtrupp, A. Systemic toxicity of di-2-ethylhexyl terephthalate (DEHT) in rodents following four weeks of intravenous exposure. Toxicology Letters 2011, 205, 8–14, https://doi.org/10.1016/j.toxlet.2011.04.020.
  • 11. EU Commission Regulation (EU) 2018/2005, No 1907/2006. Available online: https://eur-lex.europa.eu/eli/reg/2018/2005/oj/eng, (accessed on 15 Januar 2025).
  • 12. Filipiak B. Plasticizers in polymers: trends, health and ecology, 2016, Przemysł Chemiczny 1(11),237–241, https://doi.org/10.15199/62.2016.11.46.
  • 13. Zheming Z., Pingping J., Dekai L., Shan F., Pingbo Z., Yantao W., Junhong F., Agus A., Haryono A. Research progress of novel bio-based plasticizers and their applications in poly(vinyl chloride), Journal of Materials Science 2021, 56(17),1–28, https://doi.org/10.1007/s10853-021-05934-x.
  • 14. Stolp L.J., Grass M., Kodali D.R. Castor epoxy fatty acid alkyl ester estolides as bioplasticizers for poly(Vinyl Chloride), Journal of the American Oil Chemists’ Society, 2021, 98, 297–304, https://doi.org/10.1002/aocs.12462.
  • 15. Perito E.D., Guerra N.B., J. da Silva Crespo. Chemical, thermal and mechanical evaluation of poly(vinyl chloride) plastisol with different plasticizers, Journal of Elastomers and Plastics, 2022, 58, 8, https://doi.org/10.1177/00952443221135001.
  • 16. Jaoua-Bahloul H., Varieras D., Beyou E. Solar spectra properties of PVC plastisol – based films filled with various fillers, Journal of Ninyl & additive Technology, 2018, https://doi.org/10.1002/vnl.21685.
  • 17. Siekierka P., Makarewicz E., Wilczewski S., Lewandowski K., Skórczewska K., Mirowski J., Osial M. Composite of poly (Vinyl Chloride) plastisol and wood flour as a potential coating material, Coatings, 2023, 13, 1892, https://doi.org/10.3390/coatings13111892.
  • 18. Torres–Giner, S., Montanes, N., Fennolar, O., Garcia-Sanoguera, D., Balart, R. Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation, Materials & Design, 2016, 108, 648–658, https://doi.org/10.1016/j.matdes.2016.07.037.
  • 19. Georgopoulos, S.T., Tarantili, P.A., Avgerinos, E., Andreopoulos, A.G., Koukios, E.G. Thermoplastic polymers reinforced with fibrous agricultural residues. Polymer Degradation and Stability, 2005, 90, 303–312, https://doi.org/10.1016/j.polymdegradstab.2005.02.020.
  • 20. Crespo, J.E., Sanchez, L., Parres, F., López, J. Mechanical and morphological characterization of pvc plastisol composites with almond husk fillers, Polymer Composites, 2007, 28, 71–77, https://doi.org/10.1002/pc.20256.
  • 21. Abdesselam Y., Agassant J.F., Castellani R., Valette R., Demay Y., Gourdin D., Peres R. Reology of plastisol formulations for coating applications, Polymer Engineering and Science, 2016, 982–988, https://doi.org/10.1002/pen.24475.
  • 22. Maleki H., Durães L., Portugal A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies, Journal of Non – Crystalline Solids, 2014, 385, 55–74, https://doi.org/10.1016/j.jnoncrysol.2013.10.017.
  • 23. Jaoua-Bahloul H., Zinet M., Beyou E., Blanc G., Varieras D. Numerical simulation of the solar spectral properties of filled polyvinyl chloride plastisols, Journal of Thermophysics and Heat Transfer, 2020, 34, 4, https://doi.org/10.2514/1.T5952.
  • 24. Shah, L.A., Ambreen, J., Bibi, I., Sayed, M., Siddiq, M. Silver nanoparticles fabricated hybrid microgels for optical and catalytic study. Journal of The Chemical Society of Pakistan, 2016, 38, 850–858.
  • 25. Fu S., Sun Z., Huang P., Li Y., Hu N. Some basic aspects of polimer nanocomposites: A critical review, Nano Materials Science, 2019, 2–30, https://doi.org/10.1016/j.nanoms.2019.02.006.
  • 26. Kim D. Y., Patel S., Rasool K., Lone N., Bhatia S. K., eth C. S., Ghodake G. S. Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogen: A review, Science of The Total Environment, 2024, 908, 168318, https://doi.org/10.1016/j.scitotenv.2023.168318.
  • 27. Singh G., Sharma P.K., Malviya R. Biomedical applications and patents on metallic nanoparticles, Nanoscience & Nanotechnology-Asia, 2021, 153–162, https://doi.org/10.2174/2210681210999200430005827.
  • 28. Vance M.E., Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Hull DR. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory, Beilstein Journal of Nanotechnology, 2015, 6:1769–1780, https://doi.org/10.3762/bjnano.6.181.
  • 29. Liu T., Xie F., Geng L., He R., Sun M., Ni T., Xing C., Peng Y., Chen K., Fang Y. Micro-electro nanofibrous dressings based on PVDF-AgNPs as wound healing materials to promote healing in active areas, International Journal of Nanomedicine, 2025, 20, 771–789, https://doi.org/10.2147/IJN.S506489.
  • 30. Hu Q., Du Y., Bai Y., et al. Sprayable zwitterionic antibacterial hydrogel with high mechanical resilience and robust adhesion for joint wound treatment, Macromolecular Rapid Communications, 2024, 45(8):2300683, https://doi.org/10.1002/marc.202300683.
  • 31. Przemieniecki S. W., Ruraż K., Kosewska O., Oćwieja M., Gorczyca A. The impact of various forms of silver nanoparticles on the rhizosphere of wheat (Triticum aestivum L.) – Shifts in microbiome structure and predicted microbial metabolic functions, Science of The Total Environment, 2024, 914, 169824, https://doi.org/10.1016/j.scitotenv.2023.169824.
  • 32. Bapat M. S., Singh H., et al. Evaluating green silver nanoparticles as prospective biopesticides: An environmental standpoint, Chemosphere, 2022, 286, 131761, https://doi.org/10.1016/j.chemosphere.2021.131761.
  • 33. Elbeshehy E., Elazzazy A., Aggelis G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens, Frontiers in Microbiology, 2015, 6, 453, https://doi.org/10.3389/fmicb.2015.00453.
  • 34. Hazarika A., Yadav M., Yadav D., Yadav H. An overview of the role of nanoparticles in sustainable agriculture, Biocatalysis and Agricultural Biotechnology, 2022, 43, 102399, https://doi.org/10.1016/j.bcab.2022.102399.
  • 35. Assis M., Simoes L. G. et al. PVC-SiO2-Ag composite as a powerful biocide and anti-SARS-CoV-2 material, Journal of Polymer Research, 2021, 28:361, https://doi.org/10.1007/s10965-021-02729-1.
  • 36. Patnaik S., Sahoo D. P., Parida K. An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications, Renewable and Sustainable Energy Reviews, 2018, 82(1), 1297–1312, https://doi.org/10.1016/j.rser.2017.09.026.
  • 37. Zhou Y., Wang L., et al. Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers, Applied Physics Letters, 2012, 101, 012903, https://doi.org/10.1063/1.4733324.
  • 38. Taheri S., Vasilev K., Majewski P. Silver nanoparticles: synthesis, antimicrobial coatings, and applications, Recent Patents on Materials Science, 2015, 8, 166–175, https://doi.org/10.2174/1874464808666150331222126.
  • 39. Vasilev K. Nanoengineered antibacterial coatings and materials: A perspective, Coatings, 2019, 9, 654, https://doi.org/10.3390/coatings9100654.
  • 40. Seyfi J., Panahi-Sarmad M., et al. Antibacterial superhydrophobic polyvinyl chloride surfaces via the improved phase separation process using silver phosphate nanoparticles, Colloids and Surfaces B: Biointerfaces, 2019, 183, 110438, https://doi.org/10.1016/j.colsurfb.2019.110438.
  • 41. Vasilev O., Hayles A., et al. Nanoscale antibacterial coating incorporating silver nanoparticles derived by plasma techniques – A state-of-the-art perspective, Materials Today Chemistry, 2024, 41, 102341, https://doi.org/10.1016/j.mtchem.2024.102341.
  • 42. Olgun U., Tunc K., Hos A. Preparation and antibacterial properties of nano biocomposite Poly(ε-caprolactone)-SiO2 films with nanosilver, Journal of Polymer Research, 2019, 26(2), https://doi.org/10.1007/s10965-018-1686-0.
  • 43. ISO 868:2003 Plastics and ebonite — Determination of indentation hardness by means of a durometer (Shore hardness).
  • 44. ASTM E2149-01 Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Contact Conditions.
  • 45. Utracki, L.A. Polymer Blends Handbook. Springer, 2002.
  • 46. Olgun U., Tunc, K., Özaslan V. Preparation of antimicrobial polycaprolactone-silica composite films with nanosilver rods and triclosan using roll-milling method, Polymers for Advanced Technologies, 2011, 22, 2, 232–236, https://doi.org/10.1002/pat.1524.
  • 47. Ashraf, M.A., Peng, W., Zare, Y. et al. Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites, Nanoscale Research Letters, 2018, 13, 214, https://doi.org/10.1186/s11671-018-2624-0.
  • 48. Long H., Li M., Han X., Yang X. Fabrication of monodisperse Ag nanoparticles on silica nanospheres and their antibacterial activity, RSC Advances, 2014, 4, 47525–47532, https://doi.org/10.1039/c4ra08418g.
  • 49. Milczarek, G., Motylenko, M., Modrzejewska-Sikorska, A., Klapiszewski, Ł., Wysokowski, M., Bazhenov, V.V., Piasecki, A., Konował, E., Ehrlich, H., Jesionowski, T. Deposition of silver nanoparticles on organically-modified silica in the presence of lignosulfonate, RSC Advances, 2014, 94, https://doi.org/10.1039/c4ra08418g.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01265a95-db9c-45c8-913c-1c3de06f05f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.