PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the thermal properties and structure of gypsum modified with cellulose based polymer and aerogels

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza właściwości cieplnych i struktury gipsu modyfikowanego mikrododatkami
Języki publikacji
EN
Abstrakty
EN
The work presents results of research on the influence of micro materials on the thermal conductivity λ of gypsum. In the research, cellulose-based polymer and aerogel were used as the modifying micro materials. For the purpose of measuring the thermal conductivity, a non-stationary method was used based on the “hot wire method”. A very precise set of devices for measuring and recording the temperature of the heating wire was used. In the presented solution, a single measurement took only one minute. Measurements were recorded with the help of a computer measuring system, with a sampling time of 0.01s. During the 60-second-long test, 6000 measurements of the heating wire temperature were collected. A decrease of the thermal conductivity and density of hardened gypsum with added micro materials was observed due to modifications of the structure of the final product. Experimental values of the thermal conductivity of the gypsum specimens with the addition of polymer and aerogel were respectively over 23% and 6% lower than the non-modified gypsum specimen.
PL
W pracy przedstawiono wyniki pomiarów przewodności cieplnej λ czystego gipsu, a także jego modyfikacji mikrododatkami takimi jak: polimer (hydroksymetylo etylo celuloza - HEMC) i aerożel. Dodatkowo zbadano zmiany struktury modyfikowanych materiałów. Badania przewodności cieplnej oparte są na zaprojektowanym i nowatorskim stanowisku pomiarowym wykorzystującym metodę "gorącego drutu". Czas trwania pomiaru przewodności cieplnej za pomocą komercyjnych urządzeń doświadczalnych mieści się w zakresie 0,5÷4 h, tymczasem w prezentowanych badaniach pojedynczy pomiar trwał minutę. Wyniki uzyskiwane podczas pomiaru rejestrowano za pomocą komputerowego systemu pomiarowego, z czasem próbkowania wynoszącym 0,01s. Podczas 60-sekundowego testu zebrano 6000 pomiarów temperatury drutu grzejnego.
Rocznik
Strony
153--168
Opis fizyczny
Bibliogr. 33 poz., il., tab.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Płock, Poland
autor
  • Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Płock, Poland
autor
  • Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Płock, Poland
autor
  • Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Płock, Poland
Bibliografia
  • 1. K. Prałat, W. Kubissa, R. Jaskulski, J. Ciemnicka, S. Pilarczyk, Influence of selected microadditives on thermal conductivity and surface microstructure of modified gypsumsies, ACTA SCIENTIARUM POLONORUM - Architectura Budownictwo. 18 (2019) 69-75. (in Polish) doi:10.22630/ASPA.2019.18.1.69.
  • 2. K. Prałat, W. Kubissa, R. Jaskulski, J. Ciemnicka, Influence of selected micro additives content on thermal properties of gypsum, Architecture Civil Engineering Environment. 12 (2019) 69-79. doi:10.21307/ACEE-2019-037.
  • 3. R. Baetens, B.P. Jelle, A. Gustavsen, Aerogel insulation for building applications: A state-of-the-art review, Energy and Buildings. 43 (2011) 761-769. doi:10.1016/j.enbuild.2010.12.012.
  • 4. A. Soleimani Dorcheh, M.H. Abbasi, Silica aerogel; synthesis, properties and characterization, Journal of Materials Processing Technology. 199 (2008) 10-26. doi:10.1016/j.jmatprotec.2007.10.060.
  • 5. V. Lilkov, N. Djabarov, G. Bechev, O. Petrov, Properties and hydration products of lightweight and expansive cements Part II, Cement and Concrete Research. 29 (1999) 1641-1646. doi:10.1016/S0008-8846(99)00149-0.
  • 6. A. Neugebauer, K. Chen, A. Tang, A.M. Allgeier, L.R. Glicksman, L.J. Gibson, Thermal conductivity and characterization of compacted, granular silica aerogel, Energy and Buildings. 79 (2014) 47-57. doi:10.1016/j.enbuild.2014.04.025.
  • 7. M.F. Khamidi, C. Glover, S.A. Farhan, N.H.A. Puad, M.F. Nuruddin, Effect of silica aerogel on the thermal conductivity of cement paste for the construction of concrete buildings in sustainable cities, in: WIT Transactions on The Built Environment, 2014: pp. 665-674. doi:10.2495/HPSM140601.
  • 8. S. Kim, J. Seo, J. Cha, S. Kim, Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel, Construction and Building Materials. 40 (2013) 501-505. doi:10.1016/j.conbuildmat.2012.11.046.
  • 9. S. Ng, B.P. Jelle, L.I.C. Sandberg, T. Gao, Ó.H. Wallevik, Experimental investigations of aerogel-incorporated ultra-high performance concrete, Construction and Building Materials. 77 (2015) 307-316. doi:10.1016/j.conbuildmat.2014.12.064.
  • 10. S. Ng, B.P. Jelle, Y. Zhen, Ó.H. Wallevik, Effect of storage and curing conditions at elevated temperatures on aerogel-incorporated mortar samples based on UHPC recipe, Construction and Building Materials. 106 (2016) 640-649. doi:10.1016/j.conbuildmat.2015.12.162.
  • 11. T. Gao, B.P. Jelle, A. Gustavsen, S. Jacobsen, Aerogel-incorporated concrete: An experimental study, Construction and Building Materials. 52 (2014) 130-136. doi:10.1016/j.conbuildmat.2013.10.100.
  • 12. S. Fickler, B. Milow, L. Ratke, M. Schnellenbach-Held, T. Welsch, Development of High Performance Aerogel Concrete, Energy Procedia. 78 (2015) 406-411. doi:10.1016/j.egypro.2015.11.684.
  • 13. J. Strzałkowski, H. Garbalińska, Thermal and strength properties of lightweight concretes with the addition of aerogel particles, Advances in Cement Research. 28 (2016) 567-575. doi:10.1680/jadcr.16.00032.
  • 14. E. Kamseu, M.C. Bignozzi, U.C. Melo, C. Leonelli, V.M. Sglavo, Design of inorganic polymer cements: Effects of matrix strengthening on microstructure, Construction and Building Materials. 38 (2013) 1135-1145. doi:10.1016/j.conbuildmat.2012.09.033.
  • 15. E. Kamseu, B. Nait-Ali, M.C. Bignozzi, C. Leonelli, S. Rossignol, D.S. Smith, Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements, Journal of the European Ceramic Society. 32 (2012) 1593-1603. doi:10.1016/j.jeurceramsoc.2011.12.030.
  • 16. M. Gruszczyński, Estimation of shrinkage strains of cement mortars and concrete with polymer addition, Cement Wapno Beton. 12/74 (2007) 139-144.
  • 17. D. Heim, A. Mrowiec, K. Prałat, M. Mucha, Influence of Tylose MH1000 Content on Gypsum Thermal Conductivity, Journal of Materials in Civil Engineering. 30 (2018) 4018002. doi:10.1061/(ASCE)MT.1943-5533.0002177.
  • 18. P. Pichniarczyk, M. Niziurska, K. Nosal, M. Wieczorek, Influence of methylcellulose on a microstructure of gypsum and cementitious mortars, Szkło i Ceramika. 63 (2012) 12-17. (in Polish)
  • 19. P. Pichniarczyk, M. Niziurska, K. Nosal, The Influence of Methylcellulose Viscosity on Properties of Gypsum Plaster Mortars, Materiały Ceramiczne. 64 (2012) 558-562. (in Polish)
  • 20. M. Najduchowska, P. Pichniarczyk, Effect of hydrophobic agents on the properties of cement and gypsum mortars, Cement Wapno Beton. 15/77 (2010) 141-148.
  • 21. J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. I, 1st ed., Clarendon Press, Oxford, 1873.
  • 22. A. Eucken, Die Wärmeleitfähigkeit Keramischer, Fester Stoffe - Ihre Berechnung aus der Wärmeleitfähigkeit der Bestandteile, VDI Forschungsheft 353. 3 (1932).
  • 23. W. Zhang, H. Min, X. Gu, Y. Xi, Y. Xing, Mesoscale model for thermal conductivity of concrete, Construction and Building Materials. 98 (2015) 8-16. doi:10.1016/j.conbuildmat.2015.08.106.
  • 24. R. Landauer, The Electrical Resistance of Binary Metallic Mixtures, Journal of Applied Physics. 23 (1952) 779-784. doi:10.1063/1.1702301.
  • 25. K. Prałat, J. Ciemnicka, M. Grabowski, R. Jaskulski, W. Kubissa, Application of experimental setup for the thermal conductivity measurement of building materials using the ”hot wire" method, Przegląd Naukowy Inżynieria I Kształtowanie Środowiska. 28 (2019) 153-160. (in Polish) doi:10.22630/PNIKS.2019.28.1.14.
  • 26. D. Bülichen, J. Plank, Water retention capacity and working mechanism of methyl hydroxypropyl cellulose (MHPC) in gypsum plaster - Which impact has sulfate?, Cement and Concrete Research. 46 (2013) 66-72. doi:10.1016/j.cemconres.2013.01.014.
  • 27. A. Kocemba, Water retention and setting in gypsum/polymers composites, Przemysł Chemiczny. 1 (2016) 129-131. (in Polish) doi:10.15199/62.2016.5.22.
  • 28. K.S. Sikora, A.J. Klemm, Effect of Superabsorbent Polymers on Workability and Hydration Process in Fly Ash Cementitious Composites, Journal of Materials in Civil Engineering. 27 (2015) 4014170. doi:10.1061/(ASCE)MT.1943-5533.0001122.
  • 29. S. Schiavoni, F. D ׳Alessandro, F. Bianchi, F. Asdrubali, Insulation materials for the building sector: A review and comparative analysis, Renewable and Sustainable Energy Reviews. 62 (2016) 988-1011. doi:10.1016/j.rser.2016.05.045.
  • 30. K. Prałat, Research on Thermal Conductivity of the Wood and Analysis of Results Obtained by the Hot Wire Method, Experimental Techniques. 40 (2016) 973-980. doi:10.1007/s40799-016-0096-7.
  • 31. D. Heim, A. Mrowiec, K. Prałat, Analysis and Interpretation of Results of Thermal Conductivity Obtained by the Hot Wire Method, Experimental Techniques. 40 (2016) 513–519. doi:10.1007/s40799-016-0056-2.
  • 32. D. Sanz-Pont, D. Sanz-Arauz, C. Bedoya-Frutos, R.J. Flatt, S. López-Andrés, Anhydrite/aerogel composites for thermal insulation, Materials and Structures. 49 (2016) 3647-3661. doi:10.1617/s11527-015-0746-8.
  • 33. EN 12524, Building materials and products. Hygrothermal properties. Tabulated design values, 2000.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0124fe1d-0997-49fc-87d0-ad454ec24c3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.