PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of Iron and Manganese Ions from Mine Acid Water Using Manganese Green Sand in Batch Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fe and Mn metal ions in acid mine drainage can contaminate water bodies and soil, endangering human health. In this study, the adsorption of Fe and Mn in acid mine drainage was carried out using manganese greensand. This study aimed to obtain 1) the adsorption model of Fe and Mn isotherms using manganese greensand and 2) the surface morphology of manganese greensand before and after the adsorption process. This study used laboratory-scale experimental methods with variable concentrations of Fe (325, 400, 475, 550, 625 mg/L) and Mn (432, 507, 582, 657, 732 mg/L). The Freundlich and Langmuir adsorption isotherm models were used to determine the adsorption capacity of Fe and Mn by manganese greensand. Test for Fe and Mn content using the AAS method and test the surface morphology and content of manganese greensand using SEM-EDX. The results showed that: (1) the Freundlich equation test yielded for Fe: in a constant R2 of 0.9862, n = 0.6912, KB = 0.2180 mg/g, while the Langmuir equation test yielded in a constant R2 of 0.8836, b = 0.0051 L/mg, qm = 169.4915 mg/g; the Freundlich equation test yielded for Mn: in a constant R2 of 0.9923, n = 0.8651, KB = 1.0445 mg/g, while the Langmuir equation test yielded in a constant R2 of 0.6615, b = 0.0010 L/mg, qm = 500 mg/g; (2) The surface morphology of manganese greensand before contact with acid mine drainage contains needle-shaped particles of uniform size with a hexagonal structure, whereas, after contact with acid mine drainage, the particles are clumped like cotton and form needles with varying sizes.
Rocznik
Strony
158--166
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Mining Engineering Department, Adhi Tama Institute of Technology Surabaya, Jl. Arief Rachman Hakim 100 Surabaya 60117, Indonesia
  • Mining Engineering Department, Adhi Tama Institute of Technology Surabaya, Jl. Arief Rachman Hakim 100 Surabaya 60117, Indonesia
  • Chemical Engineering Department, Adhi Tama Institute of Technology Surabaya, Jl. Arief Rachman Hakim 100 Surabaya 60117, Indonesia
Bibliografia
  • 1. Budianto, A., Kusdarini, E., Amrullah, N.H., Ningsih, E., Udyani, K.A. 2021. Physics and chemical activation to produce activated carbon from empty palm oil bunches waste. IOP Conference Series: Materials Science and Engineering. IOP Publishing.
  • 2. Basu, S., Ghosh, G., Saha, S. 2018. Adsorption characteristics of phosphoric acid induced activation of bio-carbon: Equilibrium, kinetics, thermodynamics and batch adsorber design. Process Safety and Environmental Protection, 117, 125–142. https://doi.org/https://doi.org/10.1016/j.psep.2018.04.015
  • 3. Belle, G., Fossey, A., Esterhuizen, L., Moodley, R. 2021. Contamination of groundwater by potential harmful elements from gold mine tailings and the implications to human health: A case study in Welkom and Virginia, Free State Province, South Africa. Groundwater for Sustainable Development, 12. https://doi.org/https://doi.org/10.1016/j.gsd.2020.100507
  • 4. Budianto, A., Kusdarini, E., Mangkurat, W., Nurdiana, E., Asri, N. 2021. Activated Carbon Producing from Young Coconut Coir and Shells to Meet Activated Carbon Needs in Water Purification Process. Journal of Physics: Conference Series. Surabaya: IOP Publishing.
  • 5. Budianto, A., Kusdarini, E., Effendi, S., Aziz, M. 2019. The Production of Activated Carbon from Indonesian Mangrove Charcoal. Materials Science and Engineering, 462, 1–8. https://doi.org/10.1088/1757–899X/462/1/012006
  • 6. Budianto, A., Pratiwi, A.G., Ningsih, S.A., Kusdarini, E. 2023. Reduction of Ammonia Nitrogen and Chemical Oxygen Demand of Fertilizer Industry Liquid Waste by Coconut Shell Activated Carbon in Batch and Continuous Systems. Journal of Ecological Engineering, 24(7), 156–164. https://doi.org/https://doi.org/10.12911/22998993/164759
  • 7. Galangashi, M.A., Kojidi, S.F.M., Pendashteh, A., Souraki, B.A., Mirroshandel, A.A. 2021. Removing Iron, Manganese and Ammonium Ions from Water Using Greensand in Fluidized Bed Process. Journal of Water Process Engineering, 39. https://doi.org/https://doi.org/10.1016/j.jwpe.2020.101714
  • 8. Gautama, P.D.I.R.S. 2019. Pembentukan, Pengendalian dan Pengelolaan Air Asam Tambang (II). Bandung: ITB Press.
  • 9. Jung, Y.Y., Choi, S.H., Choi, M., Bong, Y.S., Park, M.Y., Lee, K.S., Shin, W.J. 2023. Acid mine drainage and smelter-derived sources affecting water geochemistry in the upper Nakdong River, South Korea Author. Science of The Total Environment, 880. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.163353
  • 10. Kusdarini, E., Budianto, A. 2018. Removal of Manganese from Well-Water on Pasuruan, East Java, Indonesia Using Fixed Bed Cation Exchanger and Prediction of Kinetics Adsorption. Indian Journal of Science and Technology, 11(23), 1–7.
  • 11. Kusdarini, E., Budianto, A. 2022. Characteristics and Adsorption Test of Activated Carbon from Indonesian Bituminous Coal. Journal of Ecological Engineering, 23(10), 1–15. https://doi.org/https://doi.org/10.12911/22998993/152343
  • 12. Kusdarini, E., Budianto, A., Gingga, F. 2018. Recovery of Gold with AgNO3 Pretreatment by Cyanidation at Heap Leaching Cijiwa Gold Ore Processing. Makara Journal of Science, 22(2), 77–81.
  • 13. Kusdarini, E., Hakim, L., Yanuwiadi, B., Suyadi, S. 2021. Study in the Development of Fixed Bed Filter Adoption of Public Health of Lake Water Users. Walailak Journal of Science and Technology, 18(8), 1–10. https://doi.org/https://doi.org/10.48048/wjst.2021.9131
  • 14. Kusdarini, E., Pradana, D.R., Budianto, A. 2022. Production of Activated Carbon from High-Grade Bituminous Coal to Removal Cr (VI). Reaktor, 22(1), 14–20. https://doi.org/https://doi.org/10.14710/reaktor.22.1.14–20
  • 15. Kusdarini, E., Purwaningsih, D.Y., Budianto, A. 2018. Adsorption of Pb2+ Ion in Water Well with Amberlite Ir 120 Na Resin. Pollution Research, 37(4), 307–312.
  • 16. Kusdarini, E., Purwaningsih, D.Y., Budianto, A. 2021. Removal Pb2+ of Well Water using Purolite C-100 Resin and Adsorption Kinetic. Pollution Research, 40(2).
  • 17. Kusdarini, E., Purwaningsih, D.Y., Iqbal, M. 2017. Removal Pb (II) dari Air Sumur di Kota Pasuruan Menggunakan Proses Cation Exchanger. Seminar Nasional Sains dan Teknologi Terapan V, D-39-D-44.
  • 18. Kusdarini, E., Suyadi, S., Yanuwiyadi, B., Hakim, L. 2019. Model of People’s Perception of Water Treatment Equipment: Preliminary Study of the Lake Water Treatment Plan in Gresik Dry Land Area, Indonesia. In: G.T.I. Tawakkal, W. Wike, N. Harahab, A. Utaminingsih, A.S. Leksono (Eds.), Proceedings of the 13th International Interdisciplinary Studies Seminar (pp. 1–9). https://doi.org/10.4108/eai.23–10–2019.2293013
  • 19. Kusdarini, E., Yanuwiadi, B., Hakim, L., Suyadi, S. 2020. Adoption Model of Water Filter by The Society of Lake Water Users in Dry Land Area, Gresik, East Java, Indonesia. International Journal on Advanced Science Engineering Information Technology, 10(5), 2089–2096.
  • 20. Nkele, K., Mpenyana-Monyatsi, L., Masindi, V. 2022. Challenges, advances and sustainabilities on the removal and recovery of manganese from wastewater: A review. Journal of Cleaner Production, 377. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.134152
  • 21. Nowruzi, R., Heydari, M., Javanbakht, V. 2020. Synthesis of a chitosan/polyvinyl alcohol/activate carbon biocomposite for removal of hexavalent chromium from aqueous solution. International Journal of Biological Macromolecules, 147, 209–216.
  • 22. Ogugua, U.V., Kanu, S.A., Ntushelo, K. 2022. Gibberellic acid improves growth and reduces heavy metal accumulation: A case study in tomato (Solanum lycopersicum L.) seedlings exposed to acid mine water. Heliyon, (12). https://doi.org/https://doi.org/10.1016/j.heliyon.2022.e12399
  • 23. Outram, J.G., Couperthwaite, S.J., Millar, G.J. 2017. Ferrous poisoning of surface MnO2 during manganese greensand operation Author links open overlay panel. Journal of Environmental Chemical Engineering, 5(3), 3033–3043. https://doi.org/https://doi.org/10.1016/j.jece.2017.06.006
  • 24. Outram, J.G., Couperthwaite, S.J., & Millar, G.J. 2018. Investigation of manganese greensand activation by various oxidants. Journal of Environmental Chemical Engineering, 6(4), 4130–4143. https://doi.org/https://doi.org/10.1016/j.jece.2018.05.060
  • 25. Tehrani, G.F., Rubinos, D.A., Kelm, U., Ghadimi, S. 2023. Environmental and human health risks of potentially harmful elements in mining-impacted soils: A case study of the Angouran Zn–Pb Mine, Iran. Journal of Environmental Management, 334. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.117470
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01217bbe-4d10-4fd0-9d7e-f735caacd648
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.