Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In this work we have studied the energy and spectral characteristics of miniaturized dielectric barrier discharge KrCl-, XeCl-, XeBr-, and Xe2-excilamps of various designs as well as short pulse point-like light sources based on runaway electron preionized diffuse discharge. The maximum ultraviolet power density was 20 mW/cm2, which is comparable with the densities of ordinary dielectric barrier discharge excilamps, whereas the maximum efficiencies of the excilamps were not greater than 2.5%. The causes for the low radiation efficiency of the compact dielectric barrier discharge driven excilamps were analyzed. It is found that at an electron concentration of ne > 1014 cm–3, the efficiency decreases due to enhanced quenching of excited atoms or molecules in dissociation by electron impact. The spectral characteristics of a runaway electron preionized diffuse discharge formed between two pointed electrodes in atmospheric pressure air in an inhomogeneous electric field at a gap shorter than 8 mm were investigated. It is shown that the radiation spectrum of the discharge consists of bands of the second positive nitrogen system, and as the discharge transforms to a spark, lines of the electrode material appear in the spectrum. At a gap of 0.5 mm, weak X-rays from the discharge gap were detected.
Czasopismo
Rocznik
Tom
Strony
475--487
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
- Institute of High Current Electronics, Akademichesky Avenue 2/3, 634055 Tomsk, Russia
- National Research Tomsk Polytechnic University, Lenina Avenue 30, 634050 Tomsk, Russia
autor
- Institute of High Current Electronics, Akademichesky Avenue 2/3, 634055 Tomsk, Russia
autor
- Institute of High Current Electronics, Akademichesky Avenue 2/3, 634055 Tomsk, Russia
- National Research Tomsk Polytechnic University, Lenina Avenue 30, 634050 Tomsk, Russia
Bibliografia
- [1] KOGELSCHATZ U., Dielectric-barrier discharges: their history, discharge physics, and industrial applications, Plasma Chemistry and Plasma Processing 23(1), 2003, pp. 1–46.
- [2] MILDREN R.P., CARMAN R.J., Enhanced performance of a dielectric barrier discharge lamp using short-pulsed excitation, Journal of Physics D: Applied Physics 34(1), 2001, pp. L1–L6.
- [3] JUN-YING ZHANG, BOYD I.W., Efficient excimer ultraviolet sources from a dielectric barrier discharge in rare-gas/halogen mixtures, Journal of Applied Physics 80(2), 1996, pp. 633–638.
- [4] LOMAEV M.I., SKAKUN V.S., SOSNIN E.A., TARASENKO V.F., SHITTS D.V., EROFEEV M.V., Excilamps: efficient sources of spontaneous UV and VUV radiation, Physics–Uspekhi 46(2), 2003, pp. 193–209.
- [5] KOGELSCHATZ U., ESROM H., ZHANG J.-Y., BOYD I.W., High-intensity sources of incoherent UV and VUV excimer radiation for low-temperature materials processing, Applied Surface Science 168(1–4), 2000, pp. 29–36.
- [6] TODE M., TAKIGAWA Y., IGUCHI T., MATSUURA H., OHMUKAI M., SASAKI W., Removal of carbon contamination on Si wafers with an excimer lamp, Metallurgical and Materials Transactions A 38(3), 2007, pp. 596–598.
- [7] BOYD I.W., ZHANG J.Y., KOGELSCHATZ U., Photo-Excited Process, Diagnostics and Application, Kluwer Academic Publishers, The Netherlands, 2003, pp. 161–199.
- [8] EROFEEV M.V., KIEFT I.E., SOSNIN E.A., STOFFELS E., UV excimer lamp irradiation of fibroblasts: the influence on antioxidant homeostasis, IEEE Transactions on Plasma Science 34(4), 2006, pp. 1359–1364.
- [9] STOFFELS E., KIEFT I.E., SLADEK R.E.J., VAN DEN BEDEM L.J.M., VAN DER LAAN E.P., STEINBUCH M., Plasma needle for in vivo medical treatment: recent developments and perspectives, Plasma Sources Science and Technology 15(4), 2006, pp. S169–S180.
- [10] MÜHLBERGER F., WIESER J., ULRICH A., ZIMMERMANN R., Single photon ionization (SPI) via incoherent VUV-excimer light: robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis, Analytical Chemistry 74(15), 2002, pp. 3790–3801.
- [11] YUBERO C., GARCÍA M.C., CALZADA M.D., Using a halogen lamp to calibrate an optical system for UV-VIS radiation detection, Optica Applicata 38(2), 2008, pp. 353–363.
- [12] NOGGLE R.C., KRIDER E.P., WAYLAND J.R., A search for X-rays from helium and air discharge At atmospheric pressure, Journal of Applied Physics 39(10), 1968, pp. 4746–4748.
- [13] TARASENKO V.F., BAKSHT E.KH., BURACHENKO A.G., KOSTYRYA I.D., LOMAEV M.I., RYBKA D.V., High-pressure runaway-electron-preionized diffuse discharges in a nonuniform electric field, Journal of Technical Physics 55(2), 2010, pp. 210–218.
- [14] TARASENKO V.F., YAKOVLENKO S.I., The electron runaway mechanism in dense gases and the production of high-power subnanosecond electron beams, Physics–Uspekhi 47(9), 2004, pp. 887–905.
- [15] BAKSHT E.H., BURACHENKO A.G., KOSTYRYA I.D., LOMAEV M.I., RYBKA D.V., SHULEPOV M.A., TARASENKO V.F., Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application, Journal of Physics D: Applied Physics 42(18), 2009, article 185201.
- [16] LOMAEV M.I., MESYATS G.A., RYBKA D.V., TARASENKO V.F., BAKSHT E.KH., High-power short-pulse xenon dimer spontaneous radiation source, Quantum Electronics 37(6), 2007, pp. 595–596.
- [17] EROFEEV M.V., TARASENKO V.F., Study of a volume discharge in inert-gas halides without preionisation, Quantum Electronics 38(4), 2008, pp. 401–403.
- [18] ZAGULOV F.YA., KOTOV A.S., SHPAK V.G., YURIKE YA.YA., M.I. YALANDIN, RADAN – a small-sized pulserepeating high-current electron accelerator, Pribory i Tekhnika Eksperimenta 2, 1989, pp. 146–149.
- [19] EROFEEV M.V., TARASENKO V.F., XeCl-, KrCl-, XeBr- and KrBr-excilamps of the barrier discharge with the nanosecond pulse duration of radiation, Journal of Physics D: Applied Physics 39(16), 2006, pp. 3609–3614.
- [20] TAO SHAO, TARASENKO V.F., CHENG ZHANG, BAKSHT E.KH., PING YAN, SHUTKO Y.V., Repetitive nanosecond-pulse discharge in a highly nonuniform electric field in atmospheric air: X-ray emission and runaway electron generation, Laser and Particle Beams 30(3), 2012, pp. 369–378.
- [21] JINZHOU XU, YING GUO, LEI XIA, JING ZHANG, Discharge transitions between glow-like and filamentary in a xenon/chlorine-filled barrier discharge lamp, Plasma Sources Science and Technology 16(3), 2007, pp. 448–453.
- [22] TARASENKO V.F., CHERNOV E.B., EROFEEV M.V., LOMAEV M.I., PANCHENKO A.N., SKAKUN V.S., SOSNIN E.A., SHITZ D.V., UV and VUV excilamps excited by glow, barrier and capacitive discharges, Applied Physics A: Materials Science and Processing 69(1 Supplement), 1999, pp. S327–S329.
- [23] SOSNIN E.A., EROFEEV M.V., TARASENKO V.F., Capacitive discharge exciplex lamps, Journal of Physics D: Applied Physics 38(17), 2005, pp. 3194–3201.
- [24] FALKENSTEIN Z., COOGAN J.J., The development of a silent discharge-driven XeBr* excimer UV light source, Journal of Physics D: Applied Physics 30(19), 1997, pp. 2704–2710.
- [25] BABICHEV A.P., Reference Book on Physical Values, [Eds.] Grigor’ev I.S., Meilikhov E.Z., Energoatomizdat, Moscow, 1991, (in Russian).
- [26] KOGELSCHATZ U., Silent discharges for the generation of ultraviolet and vacuum ultraviolet excimer radiation, Pure and Applied Chemistry 62(9), 1990, pp. 1667–1674.
- [27] ROTH J.R., Industrial Plasma Engineering, Vol. 1, IOP, Bristol, UK, 1995, p. 420.
- [28] LOMAEV M.I., TARASENKO V.F., TKACHEV A.N., SHITTS D.V., YAKOVLENKO S.I., Formation of coniform microdischarges in KrCl and XeCl excimer lamps, Technical Physics 49(6), 2004, pp. 790–794.
- [29] MARCHAL F., SEWRAJ N., JABBOUR G., RODRIGUEZ AKERRETA P., LEDRU G., Temperature dependence of xenon excimer formations using two-photon absorption laser-induced fluorescence, Journal of Physics B: Atomic, Molecular and Optical Physics 43(23), 2010, article 235210.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-012127e1-67fa-41c9-b6f0-5a1e84e7382b