PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A numerically efficient fuzzy MPC algorithm with fast generation of the control signal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Model predictive control (MPC) algorithms are widely used in practical applications. They are usually formulated as optimization problems. If a model used for prediction is linear (or linearized on-line), then the optimization problem is a standard, i.e., quadratic, one. Otherwise, it is a nonlinear, in general, nonconvex optimization problem. In the latter case, numerical problems may occur during solving this problem, and the time needed to calculate control signals cannot be determined. Therefore, approaches based on linear or linearized models are preferred in practical applications. A novel, fuzzy, numerically efficient MPC algorithm is proposed in the paper. It can offer better performance than the algorithms based on linear models, and very close to that of the algorithms based on nonlinear optimization. Its main advantage is the short time needed to calculate the control value at each sampling instant compared with optimization-based numerical algorithms; it is a combination of analytical and numerical versions of MPC algorithms. The efficiency of the proposed approach is demonstrated using control systems of two nonlinear control plants: the first one is a chemical CSTR reactor with a van de Vusse reaction, and the second one is a pH reactor.
Rocznik
Strony
59--71
Opis fizyczny
Bibliogr. 46 poz., rys., wykr.
Twórcy
  • Institute of Control and Computation Engineering, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
Bibliografia
  • [1] Bemporad, A., Borrelli, F. and Morari, M. (2000). Piecewise linear optimal controllers for hybrid systems, Proceedings of the 2000 American Control Conference, ACC, Chicago, USA, Vol. 2, pp. 1190–1194.
  • [2] Bemporad, A., Morari, M., Dua, V. and Pistikopoulos, E.N. (2002). The explicit linear quadratic regulator for constrained systems, Automatica 38(1): 3–20.
  • [3] Blevins, T., McMillan, G., Wojsznis, W. and Brown, M. (2003). Advanced Control Unleashed, ISA—The Instrumentation, Systems, and Automation Society, Research Triangle Park.
  • [4] Boulkaibet, I., Belarbi, K., Bououden, S., Marwala, T. and Chadli, M. (2017). A new T–S fuzzy model predictive control for nonlinear processes, Expert Systems with Applications 88: 132–151.
  • [5] Camacho, E. and Bordons, C. (1999). Model Predictive Control, Springer, London.
  • [6] Chaber, P. and Ławryńczuk, M. (2019). Fast analytical model predictive controllers and their implementation for STM32 ARM microcontroller, IEEE Transactions on Industrial Informatics 15(8): 4580–4590.
  • [7] Chen, J. and Huang, T. (2004). Applying neural networks to on-line updated PID controllers for nonlinear process control, Journal of Process Control 14(2): 211–230.
  • [8] Diehl, M., Bock, H., Schlöder, J.P., Findeisen, R., Nagy, Z. and Allgöwer, F. (2002). Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations, Journal of Process Control 12(4): 577–585.
  • [9] Dominguez, L.F. and Pistikopoulos, E.N. (2010). A novel mp-NLP algorithm for explicit/multi-parametric NMPC, IFAC Proceedings Volumes 43(14): 539–544.
  • [10] Dougherty, D. and Cooper, D. (2003). A practical multiple model adaptive strategy for single-loop MPC, Control Engineering Practice 11(2): 141–159.
  • [11] Doyle, F., Ogunnaike, B. and Pearson, R. (1995). Nonlinear model-based control using second-order Volterra models, Automatica 31(5): 697–714.
  • [12] Essien, E., Ibrahim, H., Mehrandezh, M. and Idem, R. (2019). Adaptive neuro-fuzzy inference system (ANFIS)-based model predictive control (MPC) for carbon dioxide reforming of methane (CDRM) in a plug flow tubular reactor for hydrogen production, Thermal Science and Engineering Progress 9: 148–161.
  • [13] Guerra, T.-M., Kruszewski, A. and Lauber, J. (2009). Discrete Tagaki–Sugeno models for control: Where are we?, Annual Reviews in Control 33(1): 37–47.
  • [14] Hu, Q., Saha, P. and Rangaiah, G. (2000). Experimental evaluation of an augmented IMC for nonlinear systems, Control Engineering Practice 8(10): 1167–1176.
  • [15] Johansen, T.A. (2002). On multi-parametric nonlinear programming and explicit nonlinear model predictive control, Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, USA, Vol. 3, pp. 2768–2773.
  • [16] Johansen, T.A. (2004). Approximate explicit receding horizon control of constrained nonlinear systems, Automatica 40(2): 293–300.
  • [17] Karimi Pour, F., Puig, V. and Ocampo-Martinez, C. (2018). Multi-layer health-aware economic predictive control of a pasteurization pilot plant, International Journal of Applied Mathematics and Computer Science 28(1): 97–110, DOI: 10.2478/amcs-2018-0007.
  • [18] Khooban, M.H., Vafamand, N. and Niknam, T. (2016). T–S fuzzy model predictive speed control of electrical vehicles, ISA Transactions 64: 231–240.
  • [19] Killian, M. and Kozek, M. (2017). Optimal partitioning of a boiler-turbine unit for fuzzy model predictive control, IFAC-PapersOnLine 50(1): 2011–2016.
  • [20] Kong, L. and Yuan, J. (2019a). Disturbance-observer-based fuzzy model predictive control for nonlinear processes with disturbances and input constraints, ISA Transactions 90: 74–88.
  • [21] Kong, L. and Yuan, J. (2019b). Generalized discrete-time nonlinear disturbance observer based fuzzy model predictive control for boiler-turbine systems, ISA Transactions 90: 89–106.
  • [22] Kouvaritakis, B., Cannon, M. and Rossiter, J. (2002). Who needs QP for linear MPC anyway?, Automatica 38(5): 879–884.
  • [23] Krishna, D., Suryanarayana, K., Aparna, G. and Padma Sree, R. (2012). Tuning of PID controllers for continuous stirred tank reactors, Indian Chemical Engineer 54(3): 157–179.
  • [24] Ławryńczuk, M. (2014). Computationally Efficient Model Predictive Control Algorithms: A Neural Network Approach, Springer, Heidelberg.
  • [25] Ławryńczuk, M. (2015). Nonlinear state-space predictive control with on-line linearisation and state estimation, International Journal of Applied Mathematics and Computer Science 25(4): 833–847, DOI: 10.1515/amcs-2015-0060.
  • [26] Ławryńczuk, M. (2020). Nonlinear model predictive control for processes with complex dynamics: A parameterisation approach using Laguerre functions, International Journal of Applied Mathematics and Computer Science 30(1): 35–46, DOI: 10.34768/amcs-2020-0003.
  • [27] Ławryńczuk, M., Marusak, P. and Tatjewski, P. (2008). Cooperation of model predictive control with steady-state economic optimisation, Control and Cybernetics 37(1): 133–158.
  • [28] Maciejowski, J. (2002). Predictive Control with Constraints, Prentice Hall, Harlow.
  • [29] Marusak, P. (2009a). Advantages of an easy to design fuzzy predictive algorithm in control systems of nonlinear chemical reactors, Applied Soft Computing 9(3): 1111–1125.
  • [30] Marusak, P. (2009b). Efficient model predictive control algorithm with fuzzy approximations of nonlinear models, in M. Kolehmainen et al. (Eds), Adaptive and Natural Computing Algorithms, ICANNGA 2009, Lecture Notes in Computer Science, Vol. 5495, Springer, Berlin/Heidelberg, pp. 448–457.
  • [31] Marusak, P. (2010). A mechanism of output constraint handling for analytical fuzzy controllers, in N. García-Pedrajas et al. (Eds), Trends in Applied Intelligent Systems, IEA/AIE 2010, Lecture Notes in Computer Science, Vol. 6097, Springer, Berlin/Heidelberg, pp. 222–227.
  • [32] Marusak, P. and Tatjewski, P. (2002). Stability analysis of nonlinear control systems with unconstrained fuzzy predictive controllers, Archives of Control Sciences 12(3): 267–288.
  • [33] Mayne, D., Rawlings, J., Rao, C. and Scokaert, P. (2000). Constrained model predictive control: Stability and optimality, Automatica 36(6): 789–814.
  • [34] Morari, M. and Lee, J. (1999). Model predictive control: Past, present and future, Computers and Chemical Engineering 23(4): 667–682.
  • [35] Nebeluk, R. and Marusak, P. (2020). Efficient MPC algorithms with variable trajectories of parameters weighting predicted control errors, Archives of Control Sciences 30(2): 325–363.
  • [36] Pistikopoulos, E.N., Dua, V., Bozinis, N.A., Bemporad, A. and Morari, M. (2000). On-line optimization via off-line parametric optimization tools, Computers and Chemical Engineering 24(2): 183–188.
  • [37] Rossiter, J. (2003). Model-Based Predictive Control, CRC Press, Boca Raton.
  • [38] Schäfer, A., Kühl, P., Diehl, M., Schlöder, J. and Bock, H. G. (2007). Fast reduced multiple shooting methods for nonlinear model predictive control, Chemical Engineering and Processing: Process Intensification 46(11): 1200–1214.
  • [39] Shen, D., Lim, C.-C. and Shi, P. (2020). Robust fuzzy model predictive control for energy management systems in fuel cell vehicles, Control Engineering Practice 98: 104364.
  • [40] Tatjewski, P. (2007). Advanced Control of Industrial Processes; Structures and Algorithms, Springer Verlag, London.
  • [41] Tatjewski, P. (2014). Disturbance modeling and state estimation for offset-free predictive control with state-spaced process models, International Journal of Applied Mathematics and Computer Science 24(2): 313–323, DOI: 10.2478/amcs-2014-0023.
  • [42] Tatjewski, P. (2017). Offset-free nonlinear model predictive control with state-space process models, Archives of Control Sciences 27(4): 595–615.
  • [43] Wojtulewicz, A. and Ławryńczuk, M. (2018a). Computationally efficient implementation of dynamic matrix control algorithm for very fast processes using programmable logic controller, 23rd International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, pp. 579–584.
  • [44] Wojtulewicz, A. and Ławryńczuk, M. (2018b). Implementation of multiple-input multiple-output dynamic matrix control algorithm for fast processes using field programmable gate array, IFAC-PapersOnLine 51(6): 324–329.
  • [45] Wu, X., Shen, J., Li, Y. and Lee, K.Y. (2015). Fuzzy modeling and predictive control of superheater steam temperature for power plant, ISA Transactions 56: 241–251.
  • [46] Zavala, V.M., Laird, C.D. and Biegler, L.T. (2008). A fast moving horizon estimation algorithm based on nonlinear programming sensitivity, Journal of Process Control 18(9): 876–884.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-011db07f-88af-4e86-9eb5-ee3f26261a98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.