PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability test of Hyperloop vehicle in different movement conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The guide of the Hyperloop system in the paper is mathematically represented as a continuous system along which the force from the capsule travels, with the capsule in turn represented as a discrete system. The simulations discussed in the article were used to determine the displacements of the magnet elements. ANSYS software was used to perform the simulations using finite element calculations (FEM). The stability of the capsule will be determined from the results of the displacements present in the system. Taking into account the existing conditions in the magnet and guide assembly system, the simulation results were used to analyse stability in technical and stochastic terms (Lyapunov criteria) for non-linear systems. In the technical stochastic stability analysis, the transverse displacements of the electromagnets were used. The probability of unstable Hyperloop motion was then calculated.
Słowa kluczowe
Rocznik
Strony
art. no. 169204
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Bibliografia
  • 1. Abdelrahman, A.S., Sayeed, J., Youssef, M.Z., Hyperloop Transportation System: Analysis, Design, Control, and Implementation, IEEE Trans. Ind. Electron., 2017, 65, 7427–7436. https://doi.org/10.1109/TIE.2017.2777412
  • 2. Blatnicky M., Dizo J., Drozdziel P., FEM analysis of main parts of a manipulator for mouting a compressor to a car equipped with a pneumatic suspension system, Diagnostyka, vol.21, no. 2, pp. 87-94, 2020. DOI 10.29354/diag/122549
  • 3. Bogusz W., Technical stability, Warsaw: IPPT PAN, 1972.
  • 4. Borucka A. Three-state Markov model of using transport means, 18th International Scientific Conference on Business Logistics in Modern Management, 2018, 18, 3-19
  • 5. Braun, J.; Sousa, J.; Pekardan, C., Aerodynamic design and analysis of the Hyperloop, AIAA J. 2017, 55, 4053–4060. https://doi.org/10.2514/1.J055634
  • 6. Chaidez E., Bhattacharyya S. P. and Karpetis A. N., Levitation Methods for Use in the Hyperloop High-Speed Transportation System, Energies 2019, 12(21), 4190, https://doi.org/10.3390/en12214190
  • 7. Chen X., Ma W. and Luo S., "Study on stability and bifurcation of electromagnet-track beam coupling system for EMS maglev vehicle," Nonlinear Dynamics, vol. 101, pp. 2181-2193, 2020. https://doi.org/10.1007/s11071-020-05917-8
  • 8. Chen X., Ma W., Luo S. and Zou R., "A vehicle-track beam matching index on EMS Maglev transportation system," Arch. Appl. Mech., 2019. https://doi.org/10.1007/s00419-019-01638-6
  • 9. Dodson B., "Beyond the hype of Hyperloop: An analysis of Elon Musk's proposed transit system," 22nd August 2013. [Online]. Available: https://newatlas.com/hyperloopmusk-analysis/28672/.
  • 10. Gutowski R., Podstawy teorii stateczności ruchu układów dyskretnych i ciągłych, Politechnika Warszawska, Wydział Mechaniczny Energetyki i Lotnictwa, Warszawa 1981.
  • 11. Hagele N., Dignath F., Vertical dynamics of the maglev vehicle transrapid. Multibody System Dynamics, 2009, 21(3). https://doi.org/10.1007/s11044-008-9136-0
  • 12. Han H. S., Yim B. H., Leec N. JHur., Y. C. and Kim S. S., "Effect of the guideway's vibrational characteristics on the dynamics of a Maglev vehicle," Vehicle System Dynamics, vol. 47, no. 3, pp. 309-324, 2009. https://doi.org/10.1080/00423110802054342
  • 13. Han S. H., Kim Y. J., Shin B. C., Kim B. H., Simulation of dynamic interaction between Maglev and guideway using FEM. Maglev 2006, Dresden, 2006.
  • 14. Hayashikawa T., Watanabe N., Dynamic behavior of continuous beams with moving loads J Eng Mech Divis, ASCE, 107 (1981), pp. 229-246 https://doi.org/10.1061/JMCEA3.0002694
  • 15. Hu J., Ma W., Chen X. and Luo S., "Levitation Stability and Hopf Bifurcation of EMS Maglev Trains," Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/2936838
  • 16. Kim K. J., Han J. B., Han H. S., and Yang S. J., Coupled vibration analysis of maglev vehicle-guideway while standing still or moving at low speeds, Vehicle System Dynamics, vol. 53, no. 4, pp. 587–601, 2015. https://doi.org/10.1080/00423114.2015.1013039
  • 17. Kim, T.K.; Kim, K.H.; Kwon, H.B., Aerodynamic characteristics of a tube train, J. Wind Eng. Ind. Aerodyn. 2011, 99, 1187–1196. https://doi.org/10.1016/j.jweia.2011.09.001
  • 18. Kisilowski J, Kowalik R. Displacements of the Levitation Systems in the Vehicle Hyperloop. Energies. 2020; 13(24):6595. https://doi.org/10.3390/en13246595
  • 19. Kisilowski J., Dynamika Układu Mechanicznego Pojazd Szynowy—Tor, PWN, Warszawa, Poland, 1991.
  • 20. Kong E., Song J. S., Kang B. B. and Na S., Dynamic response and robust control of coupled maglev vehicle and guideway system. Journal of Sound and Vibration, 2011, vol. 330, no. 25, pp. 6237–6253. https://doi.org/10.1016/j.jsv.2011.05.031
  • 21. Kowalik R., Kisilowski J., Numerical Testing of Switch Point Dynamics—A Curved Beam with a Variable Cross-Section. Materials 2020, 13(3), 701. https://doi.org/10.3390/ma13030701
  • 22. Kowalik R., Kisilowski J., The Vision System for Diagnostics of Railway Turnout Elements. Management Perspective for Transport Telematics, Springer, 2018, Volume 897 https://doi.org/10.1007/978-3-319-97955-7_15
  • 23. Lee, J.-S., Kwon, S.-D., Kim, M.-Y., & Yeo, I. H., A parametric study on the dynamics of urban transit maglev vehicle running on flexible guideway bridges. Journal of Sound and Vibration, 328(3), 301–317, (2009). doi:10.1016/j.jsv.2009.08.010
  • 24. Li J. H., Li J. and Zhou D. F., "Self-excited vibration problems of Maglev vehicle-bridge interaction system," J. Cent. South Univ., vol. 21, no. 11, pp. 4184-4192, 2014. https://doi.org/10.1007/s11771-014-2414-5
  • 25. Li X., Wang D., Liu D., Xin L. and Zhang X., "Dynamic analysis of the interactions between a low-to-medium speed Maglev train and a bridge: field test results of two typical bridges," Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol. 36, pp. 2039-2059, 2018. https://doi.org/10.1177/0954409718758502
  • 26. Lingaitis LP, Lebedevas S, Liudvinavičius L. Evaluation of the operational reliability and forecasting of the operating life of the power train of the freight diesel locomotive fleet. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2014; 16 (1): 73–79.
  • 27. Liu Y., Deng W. and Gong P., Dynamics of the Bogie of Maglev Train with Distributed Magnetic Forces, Shock and Vibration, Volume 2015,1-15. https://doi.org/10.1155/2015/896410
  • 28. Mas Soldevilla J., Dynamic analysis and stability study of the electromagnetic suspension levitation system of the Hyperloop, Hyperloop case, Delft University of Technology, 2022
  • 29. Maximov, S.; Gonzalez-Montañez, F.; Escarela-Perez, R.; Olivares-Galvan, J.C.; Ascencion-Mestiza, H. Analytical Analysis of Magnetic Levitation Systems with Harmonic Voltage Input, Actuators 2020, 9, 82. https://doi.org/10.3390/act9030082
  • 30. Musk, E., Hyperloop Alpha; SpaceX: Hawthorne, CA, USA, 2013.
  • 31. Nicholas A .A., Mohammad M.K., Exploring Bridge Dynamics for Ultra-high-speed, Hyperloop, Trains, Structures Volume 14, June 2018, Pages 69-74 https://doi.org/10.1016/j.istruc.2018.02.006
  • 32. Oh J. S., Kang T., Ham S., Lee K. S.,. Jang Y. J., Ryou H. S., Ryu J., Numerical Analysis of Aerodynamic Characteristics of Hyperloop System. Energies. 2019, 12. https://doi.org/10.3390/en12030518
  • 33. Opgenoord, M.M.; Caplan, P., On the Aerodynamic Design of the Hyperloop Concept, In Proceedings of the 35th AIAA Applied Aerodynamics Conference, Denver, CO, USA, 5–9 June 2017, p. 3740. https://doi.org/10.2514/1.J057103
  • 34. Post R. F., Ryutov D. D., The Inductrack approach to magnetic levitation. IEEE Trans. Appl. Supercond. 2000, 10, 901–904. doi: 10.1109/77.828377
  • 35. Przystupa K., Qin Z., Zabolotnii S., Pohrebennyk V., Mogilei S., Zhongju C., Gil L., Constructing Reference Plans of Two-Criteria Multimodal Transport Problem, Transport and Telecomunication, vol. 22, no. 2, pp. 129-140, 2021. https://doi.org/10.2478/ttj-2021-0010
  • 36. Rymarczyk T., Kozłowski E., Kłosowski G., Electrical impedance tomography in 3D flood embankment testing – elastic net approach, Transactions of the Institute of Measurements and Control, vol. 42, no. 2, pp. 680-690, 2020. https://doi.org/10.1177/0142331219857374
  • 37. Rymarczyk T., Kozłowski E., Tchórzewski P., Kłosowski G., Adamkiewicz P., Applying the logistic regression in electrical impedance tomography to analyze conductivity of the examined objects, International Journal of Applied Electromagnetics and Mechanics, vol. 64, no. S1, pp. S235-S252, 2020. DOI: 10.3233/JAE-209520
  • 38. Sadeghi S., Saeedifard M. and Bobko C., "Dynamic Modeling and Simulation of Propulsion and Levitation Systems for Hyperloop," 2021 13th International Symposium on Linear Drives for Industry Applications (LDIA), Wuhan, China, 2021, pp. 1-5, doi: 10.1109/LDIA49489.2021.9505882.
  • 39. Sawczuk W, Merkisz-Guranowska A, Rilo Cañás A-M, Kołodziejski S. New approach to brake pad wear modelling based on test stand friction-mechanical investigations. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2022; 24 (3): 419–426, http://doi.org/10.17531/ein.2022.3.3.
  • 40. Shi X. H, She L. H. and Chang W. S., "The bifurcation analysis of the EMS maglev vehicle-coupled-guideway system," Acta Mechanica Sinica, vol. 36, pp. 634-640, 2004. doi: 10.6052/0459-1879-2004-5-2003-357
  • 41. Świderski A., Borucka A., Grzelak M., Gil L., Evaluation of Mashinery Readiness using Semi-Markov Processes, Applied Sciences, vol. 10, no. 4, 1541, 2020. https://doi.org/10.3390/app10041541
  • 42. Talikdar R. P. and Talukdar S., "Dynamic Analysis of High-Speed MAGLEV Vehicle-Guideway," Urban Rail Transport, vol. 2, no. 2, pp. 71-84, 2016. https://doi.org/10.1007/s40864-016-0039-8
  • 43. Taylor, C.; Hyde, B.; Barr, L., Hyperloop Commercial Feasibility Analysis: High Level Overview, Cleveland, 2016. https://rosap.ntl.bts.gov/view/dot/12308/dot_12308_DS1.pdf
  • 44. Xu J., Chen C., Gao D., Luo S. and Qian Q., "Nonlinear dynamic analysis on Maglev train system with flexible guideway and double time-delay feedback control," Journal of Vibroengineering, vol. 19, no. 8, pp. 6346-6362, 2017. https://doi.org/10.21595/jve.2017.18970
  • 45. Yan B., Dai G.L., Hu N., Recent development of design and construction of short span high-speed railway bridges in China Eng Struct, 100 (2015), pp. 707-717, 10.1016/j.engstruct.2015.06.050
  • 46. Yang, Y.; Wang, H.; Benedict, M.; Coleman, D., Aerodynamic simulation of high-speed capsule in the Hyperloop system, In Proceedings of the 35th AIAA Applied Aerodynamics Conference, Denver, CO, USA, 5–9 June 2017; p. 3741. https://doi.org/10.2514/6.2017-3741
  • 47. Yau J. D., "Vibration Control of Maglev vehicles travelling over a flexible guideway," Journal of Sound and Vibration, vol. 321, pp. 184-200, 2009. https://doi.org/10.1016/j.jsv.2008.09.030
  • 48. Zhang M., Luo S. and Gao C., "Research on the mechanism of a newly developed levitation frame with mid-set air spring," Vehicle System Dynamics , vol. 56, no. 12, pp. 1797-1816, 2018. https://doi.org/10.1080/00423114.2018.1435892
  • 49. Zhang, Y., Numerical simulation and analysis of aerodynamic drag on a subsonic train in evacuated tube transportation, J. Modern Transp. 2012, 20, 44–48. https://doi.org/10.1007/BF03325776
  • 50. Zhao C. F. and Zhai W. M., Maglev vehicle/guideway vertical random response and ride quality, Vehicle System Dynamics, vol. 38, no. 3, pp. 185–210, 2002.
  • 51. Zheng X. J., Wu J. J., Zhou Y. H., Numerical analysis on dynamic control of five-degree-of-freedom maglev vehicle moving on flexible guideways, Journal of Soundand Vibration, 235 (1), (2000). https://doi.org/10.1006/jsvi.1999.2911
  • 52. Zhou D. F., Hansen C. H., and Li J., Application of least mean square algorithm to suppression of Maglev track-induced self excited vibration. Journal of Sound and Vibration, 2011 ,vol. 330, no. 24, pp. 5791–5811 https://doi.org/10.1016/j.jsv.2011.07.021
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-011ab4db-d578-453e-bd36-1834a015873c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.