PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

UAV Mission Definition and Implementation for Visual Inspection

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (16 ; 02-05.09.2021 ; online)
Języki publikacji
EN
Abstrakty
EN
This paper describes the architecture of a UAV-based flight mission-definition system. The primary objective aims at improving mission planning efficiency for conducting inspection activities using Unmanned Aerial Vehicles (UAV), concerning state-of-the-art waypoint-based techniques. During testing, the autonomous execution of the trajectory reduced the time required in all cases by almost a half while achieving the same output as a user-controlled manual flight. The proposed solution extends the possibilities of users in creating complex flight trajectories and significantly contributes to the higher time efficiency of recurrent flights.
Rocznik
Tom
Strony
343--346
Opis fizyczny
Bibliogr. 8 poz., wykr., il.
Twórcy
autor
  • Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 040 01 Košice, Slovakia
  • Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 040 01 Košice, Slovakia
Bibliografia
  • 1. Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices:A review of developments and applications. Journal of Sensors, 2017. https://doi.org/10.1155/2017/1353691
  • 2. Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T., & Moscholios, I. (2020). A compilation of UAV applications for precision agriculture. Computer Networks, 172(January), 107148. https://doi.org/10.1016/j.comnet.2020.107148
  • 3. Arenella, A.; Greco, A.; Saggese, A.; Vento, M., Real Time Fault Detection in Photovoltaic Cells by Cameras on Drones. In Image Analysis and Recognition, Proceedings ofthe 14th International Conference, ICIAR 2017, Montreal, QC, Canada, 5–7 July 2017; Karray, F., Campilho, A., Cheriet, F., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 617–625.
  • 4. Addabbo, P., Angrisano, A., Bernardi, M. L., Gagliarde, G., Mennella, A., Nisi, M., & Ullo, S. L. (2018). UAV system for photovoltaic plant inspection. IEEE Aerospace and Electronic Systems Magazine, 33(8), 58–67. https://doi.org/10.1109/MAES.2018.170145
  • 5. Hallermann, N., & Morgenthal, G. (2013). Unmanned aerial vehicles (UAV) for the assessment of existing structures. Long Span Bridges and Roofs - Development, Design and Implementation, September. https://doi.org/10.2749/222137813808627172
  • 6. Stokkeland, M., Klausen, K., & Johansen, T. A. (2015). Autonomous visual navigation of Unmanned Aerial Vehicle for wind turbine inspection. 2015 International Conference on Unmanned Aircraft Systems, ICUAS 2015, 998–1007. https://doi.org/10.1109/ICUAS.2015.7152389
  • 7. Tudevdagva, U., Battseren, B., Hardt, W., Blokzyl, S., & Lippmann, M. (2017). UAV-based Fully Automated Inspection System for High Voltage Transmission Lines Unmanned Aerial Vehicle-Based Fully Automated Inspection System for High Voltage Transmission Lines. Automation and software engineering , 1(19).
  • 8. Liu, X., Miao, X., Jiang, H., & Chen, J. (2020). Data analysis in visual power line inspection: An in-depth review of deep learning for component detection and fault diagnosis. Annual Reviews in Control, 50(June), 253–277. https://doi.org/10.1016/j.arcontrol.2020.09.002
Uwagi
1. Track 3: Network Systems and Applications
2. Session: 5th Workshop on Internet of Things - Enablers, Challenges and Applications
3. Short Paper
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-011a0211-e09c-4a57-8e67-61ef67be8f4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.