PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Harnessing Industry 4.0 Technologies: A Novel Predictive Maintenance Method for Advanced Production Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel approach has emerged to enhance the efficiency and reliability of predictive maintenance strategies, namely the taxonomy approach for defining types of production machines. This innovative method represents a significant departure from traditional categorisation methods, promising to improve how organisations manage and maintain their production equipment. Organisations can reduce overall maintenance costs and minimise unplanned downtime through proactive maintenance based on taxonomy-driven insights, increasing operational efficiency and profitability. The article explores how the taxonomy approach leverages data analytics and machine learning techniques to classify production machines into distinct categories based on their operational characteristics, usage patterns, and maintenance needs. Doing so offers several key advantages: improved precision, predictive maintenance customisation, data-driven insights, and scalability. The taxonomy approach is based on data-driven insights, allowing organisations to harness the power of big data and the Industrial Internet of Things (IIoT). Maintenance teams can detect anomalies and issues by analysing real-time data from production machines before they lead to breakdowns. In the discussion part, a brief overview highlights the integration of predictive maintenance with Industry 4.0, the uniqueness of the proposed method, and its potential implications for modern production systems.
Twórcy
  • WSB Merito University in Poznan, Departament of Logistics, Poland
  • Universidad Autonoma de Chile, Temuco, Chile
  • Department of Production Engneering, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314, Kielce, Poland
  • WSB Merito University in Poznan, Management and Quality Institute, Poland
  • Universidad Autónoma de Chile, Faculty of Engineering, Chile
Bibliografia
  • ADMA scanner – Future Industry Platform. (n.d.). Retrieved 18 March 2024, from https://przemyslprzyszlosci.gov.pl/skaner-adma-opis/
  • Alenizi, F.A., Abbasi, S., Hussein Mohammed, A., & Masoud Rahmani, A. (2023). The artificial intelligence technologies in Industry 4.0: A taxonomy, approaches, and future directions. Computers & Industrial Engineering, 185, 109662. DOI: 10.1016/J.CIE.2023. 109662
  • Arena, S., Florian, E., Zennaro, I., Orrù, P. F., & Sgarbossa, F. (2022). A novel decision support system for managing predictive maintenance strategies based on machine learning approaches. Safety Science, 146, 105529. DOI: 10.1016/J.SSCI.2021.105529
  • Bednarek, M., & Rybak, M. (2021). Total Productive Maintenance-failure-free working system, including predictive maintenance.
  • Bednarek, M., & Santana Villagra, J.M. (2017). La aplicacion de Lean Manufacturing: Casos de Polonia,Mexico, y Chile (Modelos, practica,experienciaitle). Universidad Autonoma de Chile.
  • Burggraef, P., Wagner, J., Heinbach, B., Steinberg, F., Perez, A., Schmallenbach, L., . . . P’Erez, A. R. (2023). Predictive analytics in quality assurance for assembly processes: lessons learned from a case study at an industry 4.0 demonstration cell. Authorea Preprints. DOI: 10.36227/TECHRXIV.14113715.V3
  • Caiado, R.G.G., Scavarda, L.F., Gavião, L.O., Ivson, P., Nascimento, D.L. de M., & Garza-Reyes, J.A. (2021). A fuzzy rule-based industry 4.0 maturity model for operations and supply chain management. International Journal of Production Economics, 231. DOI: 10.1016/j.ijpe.2020.107883
  • Cavallo, D., Digiesi, S., Facchini, F., & Mummolo, G. (2021). An analytical framework for assessing cognitive capacity and processing speed of operators in industry 4.0. Procedia Computer Science, 180, 318-327. DOI: 10.1016/j.procs.2021.01.169
  • CEN (European Committee for Standardization). (2017). EN 13306:2017, Maintenance Terminology. European Standard.
  • Chen, C.T. (2011). Dynamic preventive maintenance strategy for an aging and deteriorating production system. Expert Systems with Applications, 38 (5), 6287-6293. DOI: 10.1016/J.ESWA.2010.11.071
  • Chen, L., Cheng, C., Dui, H., & Xing, L. (2022). Maintenance cost-based importance analysis under different maintenance strategies. Reliability Engineering & System Safety, 222, 108435. DOI: 10.1016/J.RESS. 2022.108435
  • Chinta, V.S., Kethi Reddi, S., & Yarramsetty, N. (2023). Optimal feature selection on Serial Cascaded deep learning for predictive maintenance system in automotive industry with fused optimization algorithm. Advanced Engineering Informatics, 57, 102105. DOI: 10.1016/J.AEI.2023.102105
  • Dillinger, F., Tropschuh, B., Dervis, M.Y., & Reinhart, G. (2022). A Systematic Approach to Identify the Interdependencies of Lean Production and Industry 4.0 Elements. Procedia CIRP, 112, 85-90. DOI: 10.1016/J.PROCIR.2022.09.041
  • Florek, K., Łukaszewicz, J., Perkal, J., Steinhaus, H., & Zubrzycki, S. (1951). Taksonomia wrocławska. Przegląd Antropologiczny, XVII, 193-211.
  • Ghodsian, N., Benfriha, K., Olabi, A., Gopinath, V., Talhi, E., Hof, L.A., & Arnou, A. (2023). A framework to integrate mobile manipulators as cyber–physical systems into existing production systems in the context of industry 4.0. Robotics and Autonomous Systems, 169, 104526. DOI: 10.1016/J.ROBOT.2023.104526
  • Greco, L., Maresca, P., & Caja, J. (2019). Big Data and Advanced Analytics in Industry 4.0: A comparative analysis across the European Union. Procedia Manufacturing, 41, 383-390. DOI: 10.1016/j.promfg.2019.09.023
  • H-Nia, S., Krishna, V. V., Odolinski, K., Torstensson, P.T., Ait-Ali, A., Sundholm, L., . . . Stichel, S. (2023). Simulation-based evaluation of maintenance strategies from a life cycle cost perspective. Wear, 532 –533 (September), 205120. DOI: 10.1016/j.wear.2023.205120
  • Hammer, M., Somers, K., Karre, H., & Ramsauer, C. (2017). Profit Per Hour as a Target Process Control Parameter for Manufacturing Systems Enabled by Big Data Analytics and Industry 4.0 Infrastructure. Procedia CIRP, 63, 715–720. DOI: 10.1016/J.PROCIR.2017.03.094
  • Hernández, M.P., Puchkova, A., & Parlikad, A. K. (2022). Maintenance Strategies for Networked Assets*. IFAC-PapersOnLine, 55 (19), 151–156. DOI: 10.1016/J.IFACOL.2022.09.199
  • Jin, H., Song, X., & Xia, H. (2023). Optimal maintenance strategy for large-scale production systems under maintenance time uncertainty. Reliability Engineering & System Safety, 240, 109594. DOI: 10.1016/J.RESS.2023.109594
  • Kabugo, J.C., Jämsä-Jounela, S.L., Schiemann, R., & Binder, C. (2020). Industry 4.0 based process data analytics platform: A waste-to-energy plant case study. International Journal of Electrical Power & Energy Systems, 115, 105508. DOI: 10.1016/J.IJEPES.2019.105508
  • Küfner, T., Schönig, S., Jasinski, R., & Ermer, A. (2021). Vertical data continuity with lean edge analytics for industry 4.0 production. Computers in Industry, 125, 103389. DOI: 10.1016/J.COMPIND.2020.103389
  • Li, S., Yang, Z., He, J., Li, G., Yang, H., Liu, T., & Li, J. (2023a). A novel maintenance strategy for manufacturing system considering working schedule and imperfect maintenance. Computers & Industrial Engineering, 185, 109656. DOI: 10.1016/J.CIE.2023.109656
  • Li, X., Ran, Y., Chen, B., Chen, F., Cai, Y., & Zhang, G. (2023b). Opportunistic maintenance strategy optimization considering imperfect maintenance under hybrid unit-level maintenance strategy. Computers & Industrial Engineering, 185, 109624. DOI: 10.1016/J.CIE.2023.109624
  • Lycett, M. (2013). “Datafication”: Making sense of (big) data in a complex world. European Journal of Information Systems. Taylor & Francis. DOI: 10.1057/ ejis.2013.10
  • Mikhail, M., Ouali, M.S., & Yacout, S. (2024). A datadriven methodology with a nonparametric reliability method for optimal condition-based maintenance strategies. Reliability Engineering & System Safety, 241, 109668. DOI: 10.1016/J.RESS.2023.109668
  • Mobley, R.K. (2001). Predictive Maintenance. In R.K. Mobley (Ed.), Plant Engineer’s Handbook (Rev. ed., pp. 867–888). Woburn, MA: ButterworthHeinemann. DOI: https://doi.org/10.1016/B978-075067328-0/50052-5
  • Özcan, E., Yumuşak, R., & Eren, T. (2021). A novel approach to optimize the maintenance strategies: A case in the hydroelectric power plant. Eksploatacja i Niezawodność – Maintenance and Reliability, 23 (2), 324-337. DOI: 10.17531/EIN.2021.2.12
  • Para, J., Del Ser, J., Nebro, A.J., Zurutuza, U., & Herrera, F. (2019). Analyze, Sense, Preprocess, Predict, Implement, and Deploy (ASPPID): An incremental methodology based on data analytics for costefficiently monitoring the industry 4.0. Engineering Applications of Artificial Intelligence, 82, 30-43. DOI: 10.1016/j.engappai.2019.03.022
  • Partearroyo, M.J., De Pablos Heredero, C., Lopez, A.M., & Gutierrez, L.M.A. (2023). Towards Industry 4.0: impact on production strategies. Procedia Computer Science, 219, 563-570. DOI: 10.1016/J.PROCS.2023.01.324
  • Pasetti Monizza, G., Bendetti, C., & Matt, D.T. (2018). Parametric and Generative Design techniques in mass-production environments as effective enablers of Industry 4.0 approaches in the Building Industry. Automation in Construction, 92, 270-285. DOI: 10.1016/J.AUTCON.2018.02.027
  • Predictive Maintenance - Maximo Application Suite |IBM. (n.d.). Retrieved 12 December 2023, from https://www.ibm.com/products/maximo/predictivemaintenance
  • Rebaiaia, M.L., & Ait-Kadi, D. (2022). A new integrated strategy for optimising the maintenance cost of Production systems using reliability importance measures. IFAC-PapersOnLine, 55 (10), 1569-1575. DOI: 10.1016/j.ifacol.2022.09.614
  • Rohini, R., & Krishnan, A.K. (2017). Analysis of TwoEchelon Inventory System with Two Demand Classes. International Journal of Computational and Applied Mathematics, 12 (1), 255-271.
  • Senna, P., Barros, A.C., Bonnin Roca, J., & Azevedo, A. (2023). Development of a digital maturity model for Industry 4.0 based on the technology-organizationenvironment framework. Computers & Industrial Engineering, 185, 109645. DOI: 10.1016/J.CIE.2023.109645
  • Sielaff, L., & Lucke, D. (2021). An Approach for an Integrated Maintenance Strategy Selection considering the Context of the Value-Adding Network. Procedia CIRP, 104, 815-820. DOI: 10.1016/J.PROCIR.2021.11.137
  • Silvestri, L., Gallo, T., & Silvestri, C. (2022). Which tools are needed to implement Lean Production in an Industry 4.0 environment? A literature review. Procedia Computer Science, 200, 1766-1777. DOI: 10.1016/J.PROCS.2022.01.377
  • Velmurugan, R.S., & Dhingra, T. (2015). Maintenance strategy selection and its impact in maintenance function: A conceptual framework. International Journal of Operations and Production Management, 35 (12), 1622-1661. DOI: 10.1108/IJOPM-01-2014-0028
  • Werbos, P.J. (2007). Using ADP to understand and replicate brain intelligence: The next level design? Understanding Complex Systems, 2007, 109-123. DOI: 10.1007/978-3-540-73267-9_6/COVER
  • Yang, L., Zhao, Y., Peng, R., & Ma, X. (2018). Opportunistic maintenance of production systems is subject to random wait time and multiple control limits. Journal of Manufacturing Systems, 47, 12-34. DOI: 10.1016/J.JMSY.2018.02.003
  • Zhang, C., Chen, R., Wang, S., Dui, H., & Zhang, Y. (2022). Resilience efficiency importance measure for the selection of a component maintenance strategy to improve system performance recovery. Reliability Engineering and System Safety, 217. DOI: 10.1016/J.RESS.2021.108070
  • Zhang, S., Tang, F., Li, X., Liu, J., & Zhang, B. (2021). A hybrid multi-objective approach for real-time flexible production scheduling and rescheduling under dynamic environment in Industry 4.0 context. Computers & Operations Research, 132, 105267. DOI: 10.1016/J.COR.2021.105267
  • Zhang, X.Y., Lu, Z.H., Zhao, Y.G., & Li, C.Q. (2023). Optimum maintenance strategy for CRTS II slab track based on time-dependent system reliability. Structures, 50, 387-399. DOI: 10.1016/J.ISTRUC.2023.02.038
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0118f180-0b00-44b2-be21-a77addefbe64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.