Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In recent years, oil spill accidents have become increasingly frequent due to the development of marine transportation and massive oil exploitation. At present, satellite remote sensing is the principal method used to monitor oil spills. Extracting the locations and extent of oil spill spots accurately in remote sensing images reaps significant benefits in terms of risk assessment and clean-up work. Nowadays the method of edge detection combined with threshold segmentation (EDCTS) to extract oil information is becoming increasingly popular. However, the current method has some limitations in terms of accurately extracting oil spills in synthetic aperture radar (SAR) images, where heterogeneous background noise exists. In this study, we propose an adaptive mechanism based on Otsu method, which applies region growing combined with both edge detection and threshold segmentation (RGEDOM) to extract oil spills. Remote sensing images from the Bohai Sea on June 11, 2011 and the Gulf of Dalian on July 17, 2010 are utilized to validate the accuracy of our algorithm and the reliability of extraction results. In addition, results according to EDCTS are used as a comparator to further explore validity. The comparison with results according to EDCTS using the same dataset demonstrates that the proposed self-adapting algorithm is more robust and boasts high-accuracy. The accuracy computing by the adaptive algorithm is significantly improved compared with EDCTS and threshold method.
Czasopismo
Rocznik
Tom
Strony
311--317
Opis fizyczny
Bibliogr. 20 poz., fot., tab.
Twórcy
autor
- College of Information Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, PR China
- Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
autor
- College of Information Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, PR China
autor
- College of Information Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, PR China
autor
- College of Liberal Arts, Journalism and Communication, Ocean University of China, Qingdao, PR China
autor
- College of Information Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, PR China
autor
- College of Information Science and Engineering, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, PR China
- College of Liberal Arts, Journalism and Communication, Ocean University of China, Qingdao, PR China
Bibliografia
- [1] Adams, R., Bischof, L., 1994. Seeded region growing. IEEE Trans. Pattern Anal. 16 (6), 641-647, http://dx.doi.org/10.1109/34.295913.
- [2] Cai, L., Ma, Y., Yuan, T., Wang, H., Xu, T., 2015. An application of canny edge detection algorithm to rail thermal image fault detection. J. Comput. Comm. 3 (11), 19-24, http://dx.doi.org/10.4236/jcc.2015.311004.
- [3] Chang, L., Tang, Z., Chang, S. H., Chang, Y. L., 2008. A region-based GLRT detection of oil spills in SAR images. Pattern Recogn. Lett. 29 (4), 1915-1923, http://dx.doi.org/10.1016/j.patrec.2008.05.022.
- [4] Gade, M., Alpers, W., 1999. Using ERS-2 SAR images for routine observation of marine pollution in European coastal waters. Geosci. Remote Sens. Symp. Proc. 237 (1999), 441-448, http://dx.doi.org/10.1016/S0048-9697(99)00156-4.
- [5] Garcia-Pineda, O., Zimmer, B., Howard, M., Pichel, W., Li, X., MacDonald, I. R., 2009. Using SAR images to delineate ocean oil slicks with a texture-classifying neural network algorithm (TCNNA). Can. J. Remote Sens. 35 (5), 411-421, http://dx.doi.org/10.5589/m09-035.
- [6] Huo, Y. K., Wei, G., Zhang, Y. D., Wu, L. N., 2010. An adaptive threshold for the Canny Operator of edge detection. In: 2010 International Conference on Image Analysis and Signal Processing, Zhejiang, 371-374, http://dx.doi.org/10.1109/IASP.2010.5476095.
- [7] Liu, P., Li, X., Qu, J. J., Wang, W., Zhao, C., Pichel, W., 2011. Oil spill detection with fully polarimetric UAVSAR data. Mar. Pollut. Bull. 62 (12), 2611-2618, http://dx.doi.org/10.1016/j.marpolbul.2011.09.036.
- [8] Marghany, M., 2001. RADARSAT automatic algorithms for detecting coastal oil spill pollution. Int. J. Appl. Earth Obs. 3 (2), 191-196, http://dx.doi.org/10.1016/S0303-2434(01)85011-X.
- [9] Marghany, M., 2004. RADARSAT for oil spill trajectory model. Environ. Modell. Softw. 19 (5), 473-483, http://dx.doi.org/10.1016/S1364-8152(03)00162-2.
- [10] Mehnert, A., Jackway, P., 1997. An improved seeded region growing algorithm. Pattern Recogn. Lett. 18 (10), 1065-1071, http://dx.doi.org/10.1016/S0167-8655(97)00131-1.
- [11] Migliaccio, M., Nunziata, F., Brown, C., Holt, B., Li, X., Pichel, W., Shimada, M., 2012. Polarimetric synthetic aperture radar for transocean Deepwater Horizon oil accident monitoring. Eos 16 (93), 161-168.
- [12] Ng, H. F., 2006. Automatic thresholding for defect detection. Pattern Recogn. Lett. 27 (14), 1644-1649, http://dx.doi.org/10.1016/j.patrec.2006.03.009.
- [13] Ng, A. K. Y., Song, S., 2010. The environmental impacts of pollutants generated by routine shipping operations on ports. Ocean Coast. Manage. 53 (5-6), 301-311, http://dx.doi.org/10.1016/j.ocecoaman.2010.03.002.
- [14] Otremba, Z., 2016. Oil droplet clouds suspended in the sea: can they be remotely detected. Remote Sens. 8 (10), 857-865, http://dx.doi.org/10.3390/rs8100857.
- [15] Otsu, N., 1979. A threshold selection method from gray-level histograms. Automatica 11 (285-296), 23-27, http://dx.doi.org/10.1109/TSMC.1979.4310076.
- [16] Solberg, A. H., Storvik, G., Solberg, R., Volden, E., 1999. Automatic detection of oil spills in ERS SAR images. IEEE Trans. Geosci. Remote Sens. 37 (4), 1916-1924, http://dx.doi.org/10.1109/36.774704.
- [17] Tremeau, A., Borel, N. A., 1997. A region growing and merging algorithm to color segmentation. Pattern Recogn. Lett. 30 (7), 1191-1203, http://dx.doi.org/10.1016/S0031-3203(96)00147-1.
- [18] Vikhe, P. S., Thool, V. R., 2016. Mass detection in mammographic images using wavelet processing and adaptive threshold technique. J. Med. Syst. 40 (4), 1-16, http://dx.doi.org/10.1007/s10916-016-0435-3.
- [19] Xu, X., Xu, S., Jin, L., Song, E., 2011. Characteristic analysis of Otsu threshold and its applications. Pattern Recogn. Lett. 32 (7), 956-961, http://dx.doi.org/10.1016/j.patrec.2011.01.021.
- [20] Zhang, B., Perrie, W., Li, X., Pichel, W. G., 2011. Mapping sea Surface oil slicks using RADARSAT-2 quad-polarization SAR image. Geophys. Res. Lett. 38 (10), 602-606, http://dx.doi.org/10.1029/2011GL047013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-01133512-6a80-4d06-b2ba-977c7fc8d79f